Skip to main content

Realizing the Promise and Minimizing the Perils of AI for Science and the Scientific Community: Contents

Realizing the Promise and Minimizing the Perils of AI for Science and the Scientific Community
Contents
    • Notifications
    • Privacy
  • Project HomeRealizing the Promise and Minimizing the Perils of AI for Science and the Scientific Community
  • Projects
  • Learn more about Manifold

Notes

Show the following:

  • Annotations
  • Resources
Search within:

Adjust appearance:

  • font
    Font style
  • color scheme
  • Margins
table of contents
  1. Title Page
  2. Copyright
  3. Contents
  4. 1. Overview and Context
  5. 2. The Value and Limits of Statements from the Scientific Community: Human Genome Editing as a Case Study
  6. 3. Science in the Context of AI
  7. 4. We’ve Been Here Before: Historical Precedents for Managing Artificial Intelligence
  8. 5. Navigating AI Governance as a Normative Field: Norms, Patterns, and Dynamics
  9. 6. Challenges to Evaluating Emerging Technologies and the Need for a Justice-Led Approach to Shaping Innovation
  10. 7. Bringing Power In: Rethinking Equity Solutions for AI
  11. 8. Scientific Progress in Artificial Intelligence: History, Status, and Futures
  12. 9. Perspectives on AI from Across the Disciplines
  13. 10. Protecting Scientific Integrity in an Age of Generative AI
  14. 11. Safeguarding the Norms and Values of Science in the Age of Generative AI
  15. Appendix 1. List of Retreatants
  16. Appendix 2. Biographies of Framework Authors, Paper Authors, and Editors
  17. Index

CONTENTS

  1. 1. Overview and Context
  2. Kathleen Hall Jamieson, Anne-Marie Mazza, and William Kearney
  3. 2. The Value and Limits of Statements from the Scientific Community: Human Genome Editing as a Case Study
  4. David Baltimore and Robin Lovell-Badge
  5. 3. Science in the Context of AI
  6. Jeannette M. Wing
  7. 4. We’ve Been Here Before: Historical Precedents for Managing Artificial Intelligence
  8. Marc Aidinoff and David I. Kaiser
  9. 5. Navigating AI Governance as a Normative Field: Norms, Patterns, and Dynamics
  10. Urs Gasser
  11. 6. Challenges to Evaluating Emerging Technologies and the Need for a Justice-Led Approach to Shaping Innovation
  12. Alex John London
  13. 7. Bringing Power In: Rethinking Equity Solutions for AI
  14. Shobita Parthasarathy and Jared Katzman
  15. 8. Scientific Progress in Artificial Intelligence: History, Status, and Futures
  16. Eric Horvitz and Tom M. Mitchell
  17. 9. Perspectives on AI from Across the Disciplines
  18. David Baltimore, Vinton G. Cerf, Joseph S. Francisco, Barbara J. Grosz, John L. Hennessy, Eric Horvitz, Kathleen Hall Jamieson, Marcia K. McNutt, Saul Perlmutter, William H. Press, Jeannette M. Wing, and Michael Witherell
  19. 10. Protecting Scientific Integrity in an Age of Generative AI
  20. Wolfgang Blau, Vinton G. Cerf, Juan Enriquez, Joseph S. Francisco, Urs Gasser, Mary L. Gray, Mark Greaves, Barbara J. Grosz, Kathleen Hall Jamieson, Gerald H. Haug, John L. Hennessy, Eric Horvitz, David I. Kaiser, Alex John London, Robin Lovell-Badge, Marcia K. McNutt, Martha Minow, Tom M. Mitchell, Susan Ness, Shobita Parthasarathy, Saul Perlmutter, William H. Press, Jeannette M. Wing, and Michael Witherell
  21. 11. Safeguarding the Norms and Values of Science in the Age of Generative AI
  22. Kathleen Hall Jamieson and Marcia K. McNutt
  23. Appendix 1. List of Retreatants
  24. Appendix 2. Biographies of Framework Authors, Paper Authors, and Editors
  25. Index

Annotate

Next Chapter
1. Overview and Context
PreviousNext
All rights reserved
Powered by Manifold Scholarship. Learn more at
Opens in new tab or windowmanifoldapp.org