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CHAPTER 1

Overview and Context

Kathleen Hall Jamieson, Anne-Marie Mazza, and William Kearney

P rior to the advent of ChatGPT, there were several moments when 
artificial intelligence (AI) captured news headlines. One such in-
stance occurred in 1997 when IBM’s Big Blue computer won a chess 

match against the reigning grandmaster of the game. Then, in 2011, IBM’s 
Watson beat “the best human Jeopardy! player ever.” Six years later AlphaGo 
defeated the world’s top player of one of the most complicated board games, 
Go. A New York Times article on AlphaGo’s victory began with the line, “It 
isn’t looking good for humanity.”1

The Times’s lead sentence about AI outsmarting humans portended the 
worries that would emerge when the world awoke to the power, promise, 
and peril of artificial intelligence. That awakening occurred in late 2022 
when OpenAI released ChatGPT, an AI chatbot capable of generating con-
versational answers and analyses, as well as images, in response to user 
questions and prompts. This generative AI is built with computational pro-
cedures, including large language models, that train on vast bodies of 
human-created and curated data, including huge amounts of scientific lit
erature. It also has the ability to generate novel syntheses and ideas of its 
own that “push the expected boundaries of automated content creation.”2

Generative AI is accelerating breakthrough progress in science, perhaps 
best highlighted by Deep Mind’s AlphaFold, an AI tool that accurately pre-
dicts the unique structure of proteins, a process that in the past took many 
years and hundreds of thousands of dollars to accomplish. At the same time, 
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generative AI is raising concerns about how its use in research may under-
mine core norms and values of science, including accountability, transpar-
ency, replicability, and human responsibility. In addition, generative AI is 
still plagued on occasion by nonsensical or inaccurate output, known as hal-
lucinations. There also is a risk that the output can be biased and could 
reinforce long-standing injustices, inequalities, and inequities in society. 
Generative AI may also be used to further the proliferation of misinforma-
tion and disinformation.

To remark, as technology experts have, that AI is “evolving at a very 
rapid pace,” is an understatement; in fact, as this book was about to go to 
press, a new version of ChatGPT was said to be able to “reason” through 
science, math, and coding challenges.3 The sudden advances in artificial 
intelligence, and generative AI in particular, with new versions of chatbots 
and other AI tools being unveiled every few months, are putting increased 
pressure on the scientific community and policymakers to monitor the ad-
vances and consider their implications for research and society at large, and 
not just in the short term. As a 2022 report, Fostering Responsible Com-
puting Research, from the National Academies of Sciences, Engineering, and 
Medicine, Fostering Responsible Computing Research, reminds us, “The con-
cerns at the beginning of a technology’s developmental lifecycle are not the 
same as the ones that surface after wide-scale deployment.”4

Responding to the rapid development and deployment of artificial in-
telligence and generative AI models and the growing need for thoughtful 
consideration of their implications for the scientific community, in Sum-
mer 2023, National Academy of Sciences (NAS) President Marcia McNutt, 
Annenberg Public Policy Center (APPC) Director and Sunnylands Program 
Director Kathleen Hall Jamieson, and Sunnylands President David Lane in-
vited just over two dozen experts to a two-day virtual retreat (Novem-
ber 29–30, 2023) followed by an in-person one at Sunnylands in Rancho 
Mirage, California (February 8–10, 2024), to consider governance of AI and 
its rapid diffusion throughout society and, in particular, across the scientific 
research enterprise.5 Background papers—which form the core of this book—
on topics such as the evolution and current governance of AI, how the scien-
tific community responded to past technological breakthroughs, and the 
societal implications, including effects on equity, of AI and other emerging 



	 Overview and Context	 3

technologies, were commissioned to inform these deliberations.6 (A list of 
participants in one or both of the convenings, including the authors of the 
background papers included in this volume, can be found in Appendix 1).

Since 2015, the Annenberg Foundation Trust at Sunnylands, the APPC, 
and the NAS have partnered to fulfill Sunnylands’s mission to host 
“meetings of leaders and specialists in the major medical and scientific 
associations and institutions for the purpose of promoting and facilitat-
ing the exchange of ideas . . . ​to make advancements . . . ​for the common 
good and the public interest.”7 Joined occasionally by the National Acad
emy of Medicine, these partners have convened retreats at which leaders in 
science, academia, business, medical ethics, the judiciary and the bar, gov-
ernment, and scientific publishing identified ways to protect the integrity 
of science;8 increase the transparency of authors’ contributions to schol-
arly publications;9 articulate the principles that should guide scientific 
practice to ensure that science works at the frontiers of human knowledge 
in an ethical way; and protect the courts from inadvertent as well as delib-
erate misstatements about scientific knowledge. Plans for creation of the 
National Academy of Sciences’ Strategic Council for Research Excellence, 
Integrity, and Trust were birthed at an NAS-APPC-Sunnylands retreat,10 as 
were recommendations to protect the integrity of survey research.11

In the past, as society grappled with the implications of technologies 
ranging from nuclear energy to recombinant DNA, CRISPR-Cas 9 gene 
editing, dual use research of concern, and neural organoids and chimeras, 
the scientific community often developed practices designed to increase 
adherence to the norms that have protected the integrity of each new form 
of scientific exploration, development, and deployment. In the process, sci-
entists expanded their community’s repertoire of mechanisms designed to 
advance emerging science and technology while safeguarding the integrity 
of science and the well-being of the nation and its people.

Leading to the development of an NIH-approved biosafety framework, 
the 1975 Asilomar Conference on Recombinant DNA confirmed the impor-
tance of transparency and self-regulation among scientists involved in 
gene-splicing technology. The Belmont Report (1979), developed by the Na-
tional Commission for the Protection of Human Subjects of Biomedical 
and Behavioral Research, set respect for persons, beneficence, and justice 
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as core ethical principles for scientists involved in human subjects research 
in biomedicine and led to the establishment at research institutions of In-
stitutional Review Board (IRB) processes and checks and balances based 
on those principles. In the process, it added the concept of informed con-
sent and assessment of risks and benefits to the vocabulary of researchers.

Such past efforts remind us, as do the essays in this volume, that even 
as our understandings of emerging technologies and of their implications 
evolve, science’s commitment to core norms and values must remain stead-
fast. These reports also remind us that ethical, equitable, accountable, 
transparent science is the by-product of a vigilant scientific community that 
proactively engages the public.

Tasked with both exploring emerging challenges posed by the use of AI 
in research and charting a path forward for the scientific community, par-
ticipants in the AI retreats included experts in behavioral and social sci-
ences, ethics, biology, physics, chemistry, mathematics, and computer 
science, as well as leaders in higher education, law, governance, and science 
publishing and communication. Included in their ranks were three Nobel 
laureates and fourteen members of the National Academy of Sciences, the 
National Academy of Engineering, or National Academy of Medicine.12

In fashioning their work, the NAS-APPC-Sunnylands retreatants drew 
on the lessons learned from earlier workshops, reports, and consensus state-
ments from the National Academies of Science, Engineering, and Medicine, 
including Fostering Integrity in Research (2017),13 Reproducibility and Replica-
bility in Science (2019),14 Fostering Responsible Computing Research: Founda-
tions and Practices (2022),15 Automated Research Workflows for Accelerated 
Discovery (2022),16 a National Academies AI for Scientific Discovery Work-
shop (October 12–13, 2023),17 and National Academy of Medicine’s Generative 
AI and LLMs in Health and Medicine Workshop (October 25, 2023).18

The retreatants’ deliberations were informed as well by the commis-
sioned background papers and by presentations from Nobel Laureates 
Harold Varmus, Lewis Thomas University Professor of Medicine at Weill 
Cornell Medical College, and David Baltimore, Distinguished Professor of 
Biology at Caltech, about efforts by the scientific community to deal with 
the challenges posed by potential pandemic pathogens and emergent tech-
nologies such as human genome editing. Additionally, Baltimore and Robin 
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Lovell-Badge, head of the laboratory of stem cell biology and development 
genetics at the Francis Crick Institute in London, discussed the processes 
that led to the three International Summits on Human Genome Editing. 
Those convenings created consensus statements establishing processes and 
ethical principles to guide research and the use of human genome editing 
techniques, engage the public, and protect future generations against neg-
ative consequences. A digest of insights from Baltimore and Lovell-Badge 
forms Chapter 2 of the book. Chapter 11, “Safeguarding the Norms and Val-
ues of Science in the Age of Generative AI,” by conveners Kathleen Hall 
Jamieson and Marcia McNutt explores the guiding norms and values of sci-
ence at issue in the working group’s call for the scientific community to 
protect scientific integrity in the age of generative AI by remaining “stead-
fast in honoring the guiding norms and values of science.”

The letter inviting participants to the two-stage retreats provisionally 
adopted the Association for the Advancement of Artificial Intelligence 
(AAAI) definition of artificial intelligence as “the mechanisms underlying 
thought and intelligent behavior and their embodiment in machines.” The 
invitational letter also forecast that the retreatants’ deliberations would 
“build from and contribute to the revision of draft commissioned papers 
that will provide: 1) a historical perspective on how society has prepared and 
managed emerging transformative technologies; 2) philosophical/ethical 
lenses used to analyze and evaluate emerging technologies; 3) an overview 
of recently proposed AI frameworks, laws, principles, and guidelines; 4) eq-
uity and inclusion issues associated with AI; 5) an assessment of the cur-
rent state of scientific/technical advances in AI, hurdles and potential, and 
concerns its capacities raise; and 6) challenges and opportunities associated 
with creating and analyzing large data sets.” (Brief biographical statements 
on authors whose work is included in this book can be found in Appendix 2. 
See also Figure 1.1.)

Expanding on the AAAI definition, the retreatants presupposed with 
Eric Horvitz, Chief Scientific Officer of Microsoft, and Tom Mitchell, 
Founders University Professor at Carnegie Mellon University (see Chap-
ter 8) that “Artificial Intelligence (AI) refers to a field of endeavor as well as 
a constellation of technologies,” a notion consistent with the one set forth 
in 15 U.S.C. 9401(3).19



Figure 1.1. The Annenberg Foundation Trust at Sunnylands in Partnership with 
the Annenberg Public Policy Center University of Pennsylvania. Standing (L–R): 
Shobita Parthasarathy, Distinguished Professor of Public Policy, Univ. of Michigan; 
David J. Lane, President, The Annenberg Foundation Trust at Sunnylands; Michael 
Witherell, Director, Lawrence Berkeley National Laboratory; Tom Mitchell, 
Distinguished Fellow, Carnegie Mellon; Mark Greaves, Executive Director, AI2050; 
David Kaiser, Distinguished Professor of History, MIT; William Kearney, 
Executive Director of News, NASEM; Anne-Marie Mazza, Senior Director, 
NASEM; Juan Enriquez, Managing Director, Excel Venture Management; Eric 
Horvitz, Chief Scientific Officer, Microsoft; William Press, Distinguished Professor 
of Computer Science, UT Austin; Saul Perlmutter, Distinguished Professor of 
Physics, UC Berkeley; Urs Gasser, Professor of Public Policy, TUM; Kathleen 
Hall Jamieson, Director, Annenberg Public Policy Center; Alex John London, 
Distinguished Professor of Ethics, Carnegie Mellon; Kathleen Doherty, Chief 
Strategy and Retreats Office, The Annenberg Foundation Trust at Sunnylands; 
Jeannette M. Wing, Executive Vice President for Research, Columbia. Seated 
(L–R): Martha Minow, Distinguished Professor of Law, Harvard; Susan Ness, 
Former Commissioner, FCC; Joseph Francisco, Distinguished Professor of Earth 
and Environmental Science, UPenn; Marcia McNutt, President, NAS; John 
Hennessy, President Emeritus, Stanford; Barbara Grosz, Distinguished Professor 
Natural Sciences, Harvard; Gerald Haug, President, Leopoldina; Mary L. Gray, 
Senior Principal Research, Microsoft Research.
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With this in mind, the Sunnylands Statement (see Chapter  10) that 
emerged from the AI retreats built upon the understanding that “generative 
AI systems are constructed with computational procedures that learn from 
large bodies of human-authored and curated text, imagery, and analyses, 
including expansive collections of scientific literature. The systems are used 
to perform multiple operations, such as problem-solving, data analysis, in-
terpretation of textual and visual content, and the generation of text, images, 
and other forms of data. In response to prompts and other directives, the 
systems can provide users with coherent text, compelling imagery, and anal-
yses, while also possessing the capability to generate novel syntheses and 
ideas that push the expected boundaries of automated content creation.”

As a means of “understanding the opportunities and risks associated 
with AI today,” in Chapter 4, “We’ve Been Here Before: Historical Precedents 
for Managing Artificial Intelligence,” Marc Aidinoff, Research Associate 
at the Institute for Advanced Learning, and David Kaiser, Germeshausen 
Professor of the History of Science at the Massachusetts Institute for 
Technology, consider the ways in which the scientific community dealt with 
three historical episodes: “the early nuclear-weapons complex during the 
1940s and 1950s; biotechnology, biomedicine, and the implementation of 
various safeguards in the 1970s; and the adoption and oversight of forensic 
technologies within the US legal and criminal-justice systems over the 
course of the past century.” In their digest in Issues in Science and Technol-
ogy, they argue that “artificial intelligence needs ongoing and meaningful 
democratic oversight” which can be informed by understanding these his-
torical episodes.20

In Chapter 5, “Navigating AI Governance as a Normative Field: Norms, 
Patterns, and Dynamics,” Urs Gasser, Professor of Public Policy, Governance, 
and Innovative Technology at the Technical University of Munich, addresses 
the “rapidly evolving and complex ecosystem” that surrounds AI and iden-
tifies the a variety of tools available to decision-makers as they “seek to 
anticipate, analyze, and address harms and risks associated with the ac-
celerating pace of AI development, deployment, and use while harnessing 
its potential for human, society, and the planet at large.” This includes both 
ethical and technical standards. In his digest in Issues in Science and Tech-
nology, Gasser calls for AI governance that “leaves space for development 
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and learning,” prioritizes interoperability, and invests in implementation 
capacity.21

Alex John London, K&L Gates Professor of Ethics and Computational 
Technologies at Carnegie Mellon University, then makes the case for a 
justice-led framework when evaluating innovations such as generative AI 
in Chapter 6, “Challenges to Evaluating Emerging Technologies and the 
Need for a Justice-Led Approach to Shaping Innovation.” A justice-led fo-
cus, he argues, is better able to identify and evaluate “(a) quintessentially 
social or higher-order effects (such as network-level or institutional level ef-
fects), (b) the role of a larger number of stakeholders who shape the inno-
vation ecosystem in more indirect ways, and (c) some of the positive ethical 
claims of individuals that are relevant to evaluating innovation.” In his di-
gest in Issues in Science and Technology, London argues that a justice-led 
framework will promote “social arrangements that better secure people’s 
freedom in the face of technological change.”22

In Chapter 7, “Bringing Power In: Rethinking Equity Solutions for AI,” 
Shobita Parthasarathy, Professor of Public Policy and Women’s and Gen-
der Studies at the University of Michigan, and Jared Katzman, PhD student 
at the University of Michigan School of Information, draw our attention to 
growing concerns that AI is “exacerbating social inequity and injustice.” 
Their essay explores the responses of “policymakers, academics, and the 
technical community,” including the Blueprint for an AI Bill of Rights pro-
posed by the Biden administration. That document “recommends identi-
fying statistical biases in datasets, designing systems to be more transparent 
and explainable in their decision-making, incorporating proactive 
equity assessments into system design, including input from diverse view-
points and identities, ensuring accessibility for people with disabilities, 
pre-deployment and ongoing disparity testing and mitigation, and clear 
oversight.”23 They argue that many of such initiatives fall short because 
they fail to address “social inequalities that shape the landscape of technol-
ogy development, use, and governance, including the concentration of eco-
nomic and political power in a handful of technology companies and the 
systematic devaluation of lay contributions and perspectives, especially from 
those who have been historically marginalized.” Instead, as they argue in Is-
sues in Science and Technology, AI regulators ought to “seek out partnerships 
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with marginalized communities” in order to understand “power imbalances 
at the root of concerns surrounding AI bias and discrimination.”

Horvitz and Mitchell synthesize the journey of AI’s decades of “innova-
tion with empirical studies and prototypes, the development of theoretical 
principles, and shifts among paradigms” in Chapter 8, “Scientific Progress 
in Artificial Intelligence: History, Status, and Futures.” In the process, they 
provide a lens on understanding “the technical evolution of  different ap-
proaches to representing and reasoning with data and knowledge,” the ma-
chine learning foundations of today’s AI, as well as of discriminative and 
generative models, supervised, unsupervised, and self-supervised learning, 
and the inflection point for AI occasioned by deep learning. They also define 
key concepts and research directions before looking to a second inflection 
point: generative AI and charting its research, directions, trends, and key 
opportunities with applications for discriminative and generative AI.

As a complement to these efforts, members of the AI working group, 
Michael Witherell, Director of the Lawrence Berkeley National Laboratory, 
and William Press, the Leslie Surginer Professor of Computer Science and 
Integrative Biology at the University of Texas at Austin, planned an April 27 
symposium for the 2024 annual meeting of the National Academy of Sci-
ences moderated by working group member Jeannette Wing, Executive Vice 
President for Research and Professor of Computer Science at Columbia Uni-
versity, whose presentation in the symposium is the basis for Chapter 3, 
“Science in the Context of AI” (Figures 1.2 and 1.3).

“Much of the conversation we hear today about Artificial Intelligence (AI) 
focuses on fears concerning loss of privacy, lack of transparency and account-
ability, increase in inequality, and other social and economic issues,” noted 
the symposium planners William Press and Michael Witherell. “The wide-
spread availability of generative AI is fueling much of this debate. However, 
AI is more than just large language models, and in fact versions of AI have 
been fueling scientific discovery and exploration for several decades now.”24

Titled “AI and Scientific Discovery,” the symposium provided “an op-
portunity to hear from speakers at the forefront of developing AI to advance 
research by automating workflows, finding patterns in large and complex 
data sets, mitigating human bias, improving models, speeding up tedious 
tasks, and exploring domains inhospitable to humans.”



Figure 1.2. Marcia McNutt, President of the National Academy of Sciences, 
discusses the retreat on AI and science.
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Joining Wing in exploring both the promise of and various possible 
futures for AI-assisted research were four panelists:

•	 	Pushmeet Kohli, Vice President of Research at Google DeepMind
•	 	Daphne Koller, Founder and CEO of Insitro
•		Michael Pritchard, Director of Climate Simulation Research at 

NVIDIA and Professor at the University of California, Irvine
•	 	Jennifer Listgarten, Professor of Computer Science at the Univer-

sity of California, Berkeley

To provide a snapshot of the ways in which AI was affecting science, at both 
the virtual and in-person retreats, National Academy of Sciences, National 
Academy of Engineering, and National Academy of Medicine members of 

Figure 1.3. Standing: Jeannette M. Wing, Executive Vice President for Research 
and Professor at Columbia University, moderated a symposium titled “AI and 
Science” at the 161st Annual Meeting of the National Academy of Sciences on 
April 27, 2024. Seated (L–R): Jennifer Listgarten, UC Berkeley: “The Perpetual 
Motion Machine of AI-Generated Data and the Distraction of ChatGPT as a 
‘Scientist’ ”; Michael Pritchard, UC Irvine and Nvidia: “The Impact on Weather 
Prediction and Climate Simulation”; Daphne Koller, Insitro: “Using AI to 
Accelerate Drug Discovery”; Pushmeet Kohli, Google DeepMind: “A New Era of 
Digital Biology.”
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the Sunnylands working group shared their thoughts on the ways in which 
AI was affecting or might affect their work. As a means of preserving a sense 
of the ways in which AI was transforming scientific research in the months 
in which the retreatants were fashioning the calls for action found in their 
PNAS editorial, we include a digest of their thoughts in Chapter 9, “Perspec-
tives on AI from Across the Disciplines.”

The working group’s editorial statement “Protecting Scientific Integrity 
in an Age of Generative AI” was published in the Proceedings of the Na-
tional Academy of Sciences (PNAS) on May 21, 2024 and is included as 
Chapter 10 in this volume.25 The editorial emphasizes that advances in gen-
erative AI represent a transformative moment for science—one that will 
accelerate scientific discovery but also challenge core norms and values of 
science, such as accountability, transparency, replicability, and human re-
sponsibility. “We welcome the advances that AI is driving across scientific 
disciplines, but we also need to be vigilant about upholding long-held sci-
entific norms and values,” said National Academy of Sciences President 
Marcia McNutt, one of the coauthors of the editorial. “We hope our paper 
will prompt reflection among researchers and set the stage for concerted 
efforts to protect the integrity of science as generative AI increasingly is used 
in the course of research.”26

Urging the scientific community to follow five principles of human ac-
countability and responsibility when using artificial intelligence in research, 
the editorial advocated: transparent disclosure and attribution; verification 
of AI-generated content and analyses; documentation of AI-generated data; 
a focus on ethics and equity; and continuous monitoring, oversight, and 
public engagement.

Its twenty-four authors also called on the National Academy of Sciences 
to establish a Strategic Council on the Responsible Use of AI in Science to 
provide ongoing guidance and oversight on responsibilities and best prac-
tices as the technology evolves. The proposed strategic council should be 
established by the National Academies of Sciences, Engineering, and Med-
icine, the authors recommended, and should coordinate with the scientific 
community and provide regularly updated guidance on the appropriate uses 
of AI. The council should study, monitor, and address the evolving use of 
AI in science; new ethical and societal concerns, including equity; and 
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emerging threats to scientific norms. It should also share its insights across 
disciplines and develop and refine best practices.

This edited volume capsulizes the discussions that shaped the statement 
“Protecting Scientific Integrity in an Age of Generative AI” and provides a 
snapshot both of the state of AI science in Spring 2024 and of the efforts by 
leaders of the scientific community to ensure that the use of AI in research 
is pursued in a responsible manner. We hope it will provide a foundation 
for consideration of this fast moving and transformative technology.
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CHAPTER 2

The Value and Limits of Statements from 

the Scientific Community: Human Genome 

Editing as a Case Study

David Baltimore and Robin Lovell-Badge

I n late November 2018, when we arrived in Hong Kong for the Second 
International Summit on Human Genome Editing, we were met with the 
news that a researcher, He Jiankui of the Southern University of Science 

and Technology in Shenzhen, China, had edited embryos that developed 
into twin girls who were born just a month earlier. We had invited Dr. He 
to speak at the summit as part of an ongoing global discussion, started in 
2015, about the appropriate use of breakthrough gene editing tools, in-
cluding CRISPR-Cas9. At the time we sent our invitation to Dr. He we 
were not aware of his experiment. When we did become aware of this in 
Hong Kong, all of us on the summit organizing committee, a group con-
vened by the US National Academy of Sciences and National Academy 
of Medicine, UK Royal Society, and the Academy of Sciences of Hong 
Kong, were deeply concerned. Fortunately, the statement issued by the 
organizing committee (of which we were also members) at the end of the 
first summit on human genome editing, held in Washington, DC, in late 
2015, provided a guidepost to help us respond effectively to the news of 
Dr. He’s experiment.
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The first summit convened in 2015 by the US National Academy of Sci-
ences and National Academy of Medicine, the UK Royal Society, and the 
Chinese Academy of Sciences, drew worldwide attention. After three days 
of lively discussions, the organizing committee issued a statement, in which 
the key conclusion declared:

It would be irresponsible to proceed with any clinical use of 
germline editing unless and until (i) the relevant safety and 
efficacy issues have been resolved, based on appropriate under-
standing and balancing of risks, potential benefits, and alterna-
tives, and (ii) there is broad societal consensus about the 
appropriateness of the proposed application. Moreover, any clinical 
use should proceed only under appropriate regulatory oversight. At 
present, these criteria have not been met for any proposed clinical 
use: the safety issues have not yet been adequately explored; the 
cases of most compelling benefit are limited; and many nations 
have legislative or regulatory bans on germline modification.1

When we learned on the eve of our 2018 summit in Hong Kong that Dr. He 
had used CRISPR/Cas-9 to edit the embryos of newly born twin girls, spe-
cifically targeting a gene, CCR5, that codes for a protein that HIV-1 uses to 
enter cells, a few members of our organizing committee met with him to 
ask exactly what he had done. What we learned from him indicated that he 
had acted irresponsibly, given that the conditions set forth in the 2015 state-
ment had not yet been met (nor have they currently been met). We agreed, 
however, that in the interest of scientific openness, Dr. He should be allowed 
to remain on the agenda and given an opportunity to report on his work. 
When he spoke on the second day of the summit, there were nearly 100 re-
porters and photographers in the auditorium, along with approximately 
400 attendees, and a worldwide audience of over one million watching a live 
webcast. Immediately after Dr. He’s presentation, I (David Baltimore, as 
chair of the 2018 summit organizing committee) took the lectern to con-
demn He’s experiment as “irresponsible,” and to criticize him for his lack 
of transparency; then I added: “There has been a failure of self-regulation 
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by the scientific community.” Although our 2015 statement provided impor
tant principles that we expected the scientific community to follow, it had 
failed to stop a rogue scientist from pursuing heritable genome editing.

At the end of the Hong Kong summit, the organizing committee, com-
prising representatives from eight countries, issued a new statement updat-
ing the 2015 statement. While expressing deep concern with Dr.  He’s 
reported experiment, we also took note of the progress that had been made 
in further developing genome editing tools, the attention that various coun-
tries were giving to genome editing, and the need for ongoing public en-
gagement. We noted the “rapid advance of somatic gene editing into clinical 
trials,” but at the same time, emphasized that we “continue to believe that 
proceeding with any clinical use of germline editing remains irresponsible 
at this time.”2 (Somatic gene editing is the editing of genes in adult cells, 
whereas heritable genome editing via germline cells involves edits that may 
be passed onto future generations.)

The word “irresponsible” in both statements was not used lightly. Re-
sponsibility is a hallmark of scientific excellence and integrity. As science 
advances and our understanding increases, it is essential that the scientific 
community maintains high expectations for its members.

Statements such as these are not meant to be set in stone but rather 
should be updated as the science moves forward and societal concerns 
change. Our first statement, therefore, acknowledged that “as scientific 
knowledge advances and societal views evolve, the clinical use of germline 
editing should be revisited on a regular basis.”3 Thus, the 2018 statement 
called for a more defined approach to determine whether germline editing 
in clinical settings could someday be permitted in accordance with scien-
tific and medical norms and values. We stated that

the scientific understanding and technical requirements for 
clinical practice remain too uncertain and the risks too great to 
permit clinical trials of germline editing at this time. Progress 
over the last three years and the discussions at the current sum-
mit, however, suggest that it is time to define a rigorous, respon-
sible translational pathway toward such trials.4
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In addition, the statement emphasized that the pathway must adhere to

widely accepted standards for clinical research, including criteria 
articulated in genome editing guidance documents published in 
the last three years. Such a pathway will require establishing 
standards for preclinical evidence and accuracy of gene modifica-
tion, assessment of competency for practitioners of clinical trials, 
enforceable standards of professional behavior, and strong 
partnerships with patients and patient advocacy groups.5

Following the 2018 summit numerous organizations issued reports detail-
ing such a pathway.6 When we convened in London in 2023 for the Third 
International Summit on Human Genome editing, chaired by Robin Lovell-
Badge, coauthor of this essay, the world had just begun emerging from a 
global pandemic. The organizing committee, which included representa-
tives from eleven countries, sought to continue the discussion about the 
science and ethics of genome editing, given the tremendous advances that 
had been made in somatic cell editing. We also drew even greater attention 
to issues of access, cost, and equity, especially given the price of emerging 
gene editing treatments.

Just as we did at the first two summits, the organizing committee issued 
a statement at the conclusion of the third. That statement noted “remark-
able” progress in somatic genome editing, based on demonstrations, includ-
ing a first-person account by a patient, that it could be used to cure once 
incurable diseases. Further, the statement indicated that to realize the full 
therapeutic benefits of somatic editing, “research is needed to expand the 
range of diseases it can treat, and to better understand risks and unintended 
effects.”7 It noted that “the extremely high costs of current somatic gene 
therapies are unsustainable” and identified an urgent need for “a global 
commitment to affordable, equitable access to these treatments.”8

With respect to heritable genome editing, the committee reiterated that 
it “remains unacceptable at this time.”9 Moreover, we added that: “Public 
discussions and policy debates continue and are important for resolving 
whether this technology should be used. Governance frameworks and ethi-
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cal principles for the responsible use of heritable human genome editing are 
not in place. Necessary safety and efficacy standards have not been met.”10

Having set the foundation at our 2015 summit for the pursuit of somatic 
gene editing technologies while expressing extreme caution about the use 
of heritable editing, over the next eight years the statements were able to 
reaffirm, clarify, and take note of advances in science and societal responses. 
Each statement built on the knowledge that the scientific community had 
gained and the ever-evolving expectations and demands of society to par-
ticipate in decisions about the clinical applications of the science. Even 
though it is difficult to obtain universal consensus on contentious issues 
such as this, the statements were authored by diverse organizing commit-
tees and with the input of diverse audiences. They served as a reference point 
for the scientific community and the public and spurred ongoing engage-
ment with diverse stakeholders. Although we do not have the capacity for 
global monitoring, and despite Dr. He’s demonstration of the relative ease 
at which heritable genome editing could be done, albeit very badly, we are 
unaware at this time of any additional attempts at human heritable germ-
line editing. We are reluctant to credit the summit statements for this re-
straint, but we do believe that such statements provide guidance and 
grounding for the scientific community in its consideration of emerging 
technologies. Artificial intelligence, especially generative AI, is a case in 
point. This technology will likely have huge impacts on all aspects of sci-
ence and society. More stringent governance may be necessary, but in the 
meantime, proposing guiding principles for AI’s development and deploy-
ment in research is an appropriate step for leaders in the scientific commu-
nity to take to convey that it should be utilized responsibly in ways that 
uphold the integrity and norms of science and bolster public trust.
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CHAPTER 3

Science in the Context of AI

Jeannette M. Wing

G enerative AI took even the computer science community by sur-
prise. To put this disruption in context, let’s start at the beginning, 
surf through two waves of AI, and then situate science in this time 

line. With selective highlights, I offer a compressed history of AI; a simpli-
fied view of the transformer architecture, which underlies generative AI; and 
a bird’s eye view of how AI can benefit science.

Part 1: AI Time Line

In 1950, Alan Turing, considered the father of modern computer science, 
proposed the Turing Test: If a human interacts with a machine, and the 
human cannot tell the difference between interacting with the machine and 
interacting with another human being, then the machine passes the Tur-
ing Test. We could thus consider this machine as exhibiting, in some sense, 
human intelligence.

The year 1956 marks not only when the term artificial intelligence was 
born but also the start of AI as an academic pursuit. At a summer confer-
ence held in Dartmouth, the participants asked whether we could build 
a machine that mimics the behavior of humans. This grand goal of AI 
was recognized early on as too difficult to achieve. Thus, subfields of AI 
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splintered off, representing subtasks of human intelligence: computer vi-
sion for vision, speech recognition and natural language processing for 
language, and robotics for mobility and manipulation. Other subtasks 
such as logical reasoning and abstract reasoning found common ground 
with subfields of computer science, including theorem proving, formal 
methods, and programming languages. The first wave of AI, during the 
last half of the last century, is signified by representing knowledge sym-
bolically, not numerically, and representing reasoning by rules. For exam-
ple, with the following rule:

Man(X) ⇒ Mortal(X)

if Socrates is a man, then I can conclude Socrates is mortal.
These rule-based methods led to what are called “expert systems,” which 

by the late 1990s found their way into scientific domains. The first expert 
system project, Dendral,1 began in 1965 with the goal of capturing knowl-
edge about organic chemistry so chemists could identify unknown organic 
molecules “by analyzing their mass spectra and using knowledge of chem-
istry.”2 Expert systems were limited by the need to enter and maintain rules 
manually; they were constrained to the vocabulary of the rules and did not 
scale to learn new domain knowledge automatically.

The second wave in AI hit by the end of the last century, and we are still 
riding it. It is signified by machine learning, where one trains a computa-
tional model on data, and upon deployment of the model in the real world, 
it can act on data it has never seen before. Moreover, the models learn from 
these interactions, thereby improving the model over time. The second wave 
is distinct from the first in that it is driven by the plethora of digital data, 
especially data that represents human behavior, for example, what our movie 
preferences are, when and how we commute to work every day, and what 
groceries we buy.

One form of machine learning models is deep neural networks (DNNs),3 
which are characterized by multiple layers of nodes, where each layer is con-
nected to the next by weighted edges. Each node at each layer computes a 
function based on input weights and correspondingly outputs weights for 
nodes in the next layer. Overall, a DNN transforms input data (e.g., an 
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image) into an abstract representation of the data (e.g., a classification of that 
image). As a simple example, suppose a deep neural network was trained to 
classify images. Then if we feed it a picture of a cat that it has never seen 
before, it will output that it is a cat. More precisely, it will output the classifi-
cation label “cat” with an associated high probability, say 0.95, and perhaps a 
different label, for example, “tiger,” with a lower probability, say 0.01. The 
DNN boom took off when, in 2012, AlexNet won the ImageNet contest on 
1.2 million images and 1,000 classes.4 DNNs showed how with Big Data 
and Big Compute, machines could perform certain tasks as well as or bet-
ter than humans. They are part of computer vision systems in self-driving 
cars; they enable voice recognition in personal assistants on our phones and 
tabletop devices in our living rooms; and they were at the core of the com-
puting system that in 2016 beat the best human Go player in the world.

Fast-forward ten years into the Age of Generative AI, where we can gen-
erate new data, such as text that has never been written before or images 
that have never been created before. One generative AI technique is based 
on large-language models (LLMs).5 Authors of an early exploratory paper 
contrasting ChatGPT versus GPT4 show how GPT4 is able to generate a 
proof, which requires knowledge of calculus, to a simplification of a prob
lem statement that appeared in the 2022 International Mathematics Olym-
piad.6 Another generative AI technique is based on diffusion models,7 which 
are especially good at generating images. A diffusion model first iteratively 
adds noise to the original picture, say of a dog, and then iteratively denoises 
to get a new image, that is, a brand-new picture of a dog.

To put science in the context of this AI time line, by the 1980s, supercom-
puters became the workhorse of science, for example, performing enormous 
numerical calculations and running complex simulations of physics-based 
models. The explosion of scientific data generated by devices and instru-
ments enabled the age of data-driven science. From embedded microchips 
to space telescopes, scientists could sense the world, take measurements, 
record dynamics, and produce images of natural systems at unprecedented 
scale and speed.

At about the same time, statistical machine learning pulled the splin-
tered subfields of AI back together, bringing vision, language, and robotics 
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closer to each other, and even teasing us about the eventuality of artificial 
general intelligence (AGI).

It is the convergence of Big Compute, Big Data, and advanced AI that 
provides the context of this panel on using AI to make scientific discover-
ies. For science, the real breakthrough event came in 2018 with AlphaFold, 
an AI system built on both deep learning and reinforcement learning that 
could predict protein structure.8

In just the past 10 years, the second wave has turned into a tsunami. We 
have seen a 3.4-month doubling in the past 10 years in computational power 
(measured in petaflops per day) used to create machine learning models 
(Figure 3.1). In contrast, the 2-year doubling due to Moore’s Law looks like 
the lower part of the curve. Note the y-axis is a log scale. Since 2010, we have 
also seen a 2.2× growth rate in training data size.9 In just the past 4 years, 
we have gone from talking about billions of words with OpenAI’s GPT3 to 
trillions with Databricks’s DBRX.
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Figure 3.1. Compute versus machine learning model. Graphic from “AI and 
compute,” OpenAI, May 16, 2018, https://openai​.com​/index​/ai​-and​-compute​/.
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Part 2: Generative AI Architecture

How can scientists ride this tsunami? It is worth understanding a few basic 
concepts underlying generative AI, the cause for the recent disruption in the 
AI time line, and whose impact will be felt by all fields of endeavor for the 
long-term future. There is no going back. Today, generative AI is particularly 
remarkable for generating text and images. Tomorrow, who knows?

For example, to generate text,10 if we feed a large-language model a se-
quence of words, then the LLM will predict the next word. That is all it does! It 
will produce the word with the highest probability of occurring next. More 
formally, when given an initial i−1 words, we draw the next word from the 
distribution of possible next words:

P(wi | w1, . . . ​, wi-1)

For example, if we feed in the input sequence “The cute dog begged for a” it 
will output “bone” assuming no other word has a higher associated 
probability.

Example	 Probability
The cute dog begged for a bone	 0.85
The cute dog begged for a promotion	 0.02

As mentioned earlier, we can generate new images using not just LLMs but 
diffusion models. The diffusion model was inspired by nonequilibrium sta-
tistical physics;11 natural diffusion processes are found in physics, chemis-
try, and biology. In a diffusion model, the forward process systematically 
adds noise to an image; we then learn a reverse process by denoising, and 
in this process generate a new image (Figure 3.2).

What is fundamental to both techniques is that the underlying proba-
bility distributions are learned from billions of examples and represented 
as deep neural networks. Consider the transformer architecture,12 which is 
shared by state-of-the-art large-language models. The transformer architec-
ture has two steps, and both steps build on DNNs.13 In the first step, through 
a series of transformations, we encode the input into a multidimensional em-
bedding space (Figure 3.3).
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The manifold hypothesis states that real-world high-dimensional data 
lie on low-dimensional manifolds embedded in the high-dimensional 
space.14 Thus, we can imagine that each transformer via linear and nonlin-
ear operations stretches and squashes manifolds in this space, passing the 
transformed manifold onto the next layer. While we do not know if the 
manifold hypothesis is true, minimally it provides good intuition as to what 
happens at each layer. The result of this step is that each input word is em-
bedded in this space. Embeddings make it possible to represent symbolic 
information numerically. Each word gets represented as a vector of float-
ing point numbers, each of which represents some feature of the word (see 

Figure 3.2. Generating a new dog image. Example from Lin Yang, Zhilong Zhang, 
Yang Song, Shenda Hong, et al., “Diffusion Models: A Comprehensive Survey of 
Methods and Applications,” ACM Computing Surveys 56, no. 4 (November 9, 
2023): 1–39, https://doi​.org​/10​.1145​/3626235.
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Figure 3.3. Transformer architecture, step 1: encode the input. Drawn from John 
Launchbury, “The Trajectory of AI,” Presentation at Galois, Portland, OR, 
December 2023.
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left-hand side of Figure 3.4). Embeddings convert high-dimensional data 
into a low-dimensional space.

What is interesting about embedding spaces is that both distance and 
direction have meaning; hence we often use the term vector embeddings. 
From embeddings we can learn abstract concepts not explicitly repre-
sented. In the embedding shown in the right-hand side of Figure  3.4, 
“king” is to “queen” as “man” is to “woman” represents the abstract con-
cept of gender. And “king” is to “queen” as “kings” is to “queens” repre-
sents plurality. (These examples are taken from Figure 2 in Mikolov, Yih, 
and Zweig 2013.15)

In the second step, we decode the input sequence of words in the em-
bedding space and eventually output the word with the highest probability 
of occurring next.16 But unlike DNNs of the past, critical to the success of 
this architecture, we also add attention layers in between the transformer 
layers (Figure 3.5).

After all these transformations, we finally output “bone” (with an as-
sociated probability, say 0.85), which is then appended to the previous out-
put tokens and used as input for the next iteration. This iterative process is 
how ChatGPT works.

Attention layers provide context for the words being processed. Con-
text constrains the possibilities. Each node provides key information about 
itself to others, for example, “I’m a noun.” And each node can query for in-
formation from its neighbors, for example, “I need a color.” (Key and query 
are terms used in information retrieval, also used in Vaswani et al. 2017.17)
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Figure 3.4. Embeddings represent knowledge abstractly.
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This context can help us resolve ambiguity in language. For example, 
Winograd Schema,18 which are considered mini-Turing tests, are easily solv-
able by large-language models, and thus makes it seem as if LLMs can do 
common-sense reasoning. In this example,

The trophy doesn’t fit in the brown suitcase because it is too 
[large/small].

it is ambiguous whether “it” refers to “trophy” or “suitcase.” We would know 
how to resolve the ambiguity if we know whether the last word is “large” or 
“small,” which might be in the context of a longer input sequence.

Part 3: AI for Science

Let’s take a step back from AI and explore how science can benefit from AI. 
Scientists can use generative AI to generate synthetic data, generate simula-
tions, and more interestingly generate new hypotheses. The novelty of these 
new hypotheses is that because the computer has access to an enormous 
amount of data, it can find patterns or correlations that would never occur to 
a human or would take more than a lifetime for a human to uncover.
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Figure 3.5. Transformer architecture, step two: decode to output next token; 
attention layers provide context. Drawn from John Launchbury, “The Trajectory 
of AI,” presentation at Galois, Portland, OR, December 2023.
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Even with more established techniques, such as DNNs, scientists can 
use AI for identification and discovery. We can classify and predict ob-
jects, recognize and discover new patterns, and detect anomalies and rare 
events. We can design and optimize experiments with AI recommending 
what control parameters to try for the next experiment. Automated experi-
mental design is especially cost-effective and time-saving when running 
experiments on large, expensive instruments (e.g., a cyclotron, telescope, 
or neutrino detector). We could even use AI to propose new experi-
ments and protocols to run. And it is a given that by using current AI 
techniques (e.g., LLMs), scientists can automatically pore through scien-
tific literature, summarize results quickly, and create compelling visual-
izations. Finally, because AI techniques are agnostic as to what field of 
science we work in, by using AI we have the potential to expedite cross-
disciplinary work.

Cutting across these categories of application, we can draw on a multi-
tude of diverse sources of data to train and test new AI models for science:

•	 	Scientific publications, preprints, lab notebooks
•	 	Databanks, shared repositories, github
•	 	Data from experiments
•	 	Data from devices and scientific instruments (small to large)
•	 	Data from simulations
•	 	Data from the internet/web

These sources can be multimodal, structured and unstructured: text, im-
ages, graphs, tables, audio, video, clinical, software, and so forth.

To be more specific, consider two scientific disciplines, not covered 
by  the panelists, to see how AI has already been helping to make new 
discoveries.

In astronomy,19 scientists used DNNs to recognize galaxies and now can 
classify galaxies with an accuracy of 98 percent. Astronomers used AI to 
detect new exoplanets, to predict signatures of new types of gravitational 
waves, and to find a unique object that may be a remnant of two black holes 
merging. They used generative AI to produce a sharper image of the very 
first image of a black hole.
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In materials science,20 the design space is huge. A short polymer with 
100 amino acids has on the order of 10130 designs, more than the number of 
atoms in the universe. Materials scientists are using generative AI to create 
new material designs. For example, Markus Buehler used LLMs to create a 
never-before-seen design of a hierarchical mycelium-based composite.21 Ma-
terials scientists are exploring how to use AI to identify new equations and 
algorithms, to synthesize complex novel proteins that do not exist in na-
ture, to visualize complex systems, and to predict how a new material will 
behave.

What’s in the Future?

Looking ahead, already the scientific community is exploring how to build 
foundational models for their scientific domain, which can be later fine-
tuned to a specific problem or even to other domains. For example, Shirley 
Ho of the Flatiron Institute is leading the Polymathic AI initiative, an in-
ternational and multidisciplinary team of collaborators, including experts 
from physics, astrophysics, mathematics, artificial intelligence, and neuro-
science, to build foundational models that could be applied to a wide range 
of scientific problems.22 As another example, Prov-GigaPath is a whole-slide 
pathology foundation model pretrained on 1.3 billion image tiles in 171,189 
whole slides from Providence, a large US health network.23

Scientists can tailor concepts from the transformer architecture model 
and apply them to their domain. What is the analogy to predicting the next 
word? What are analogies to abstractions such as language, grammar, em-
beddings, and context? For example, a collaboration between astronomers 
and computer scientists are exploring “planetary linguistics” to determine 
whether planetary systems fall into natural categories following grammat-
ical rules.24

Although Big Data and Big Compute have been responsible for driving 
the Second Wave of AI, for many reasons, the scientific community, includ-
ing computer science and AI researchers, should pursue what can be done 
with Small Data and Small Compute.25 Currently only those working in a 
handful of big technology companies have access to the large amounts of 
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data and compute to train and build state-of-the-art AI models; the aca-
demic community is impoverished. Can we get similar functionality with 
less, perhaps through cleverer algorithms? Moreover, we may not have an 
abundance of data in some scientific domains. Finally, building today’s 
models incurs enormous energy usage; building smaller models with less 
data could be more energy-efficient.

One direction the AI community could pursue is combining symbolic 
models of the past with statistical models of today.26 A different hybrid ap-
proach for science is to combine machine learning with physics-based mod-
els (e.g., for simulations). For example, one aim of the National Science 
Foundation (NSF) Science and Technology Center “Learning the Earth with 
AI and Physics (LEAP)” is to reduce the uncertainty envelopes of climate 
model predictions using machine learning.27

There are some challenges, the first of which is having enough reliable 
scientific data.28 And finally, AI raises a new challenge to ensuring scien-
tific integrity. To address this challenge, we not only need to educate scientists 
to check the accuracy of AI outputs29 but also to do more research on 
trustworthy AI.30

AI has been around for decades, but today’s AI craze has captured the 
fascination of the public and media. Is this another technology fad? Defini-
tively not. The next generation will not know a world without generative AI 
as part of their lives, much like the current generation without the internet 
or smartphones. How should the scientific community respond? Understand 
it, embrace it, and explore with it.
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CHAPTER 4

We’ve Been Here Before: Historical 

Precedents for Managing 

Artificial Intelligence

Marc Aidinoff and David I. Kaiser

Introduction

Scientific and technological innovations are made by people, and so they can 
be governed by people. Notwithstanding breathless popular descriptions of 
disempowered citizens cowed by technical complexity or bowing to the inevi-
table march of the new, history teaches that novel technologies like artificial 
intelligence can—indeed, must—be developed with ongoing and meaningful 
democratic oversight. Self-policing by technical experts is never enough to 
sustain an innovation ecosystem worthy of public trust. Contemporary arti-
ficial intelligence (AI) and related computing techniques might be distinct 
technological phenomena, but they too can be governed in the public interest.

Rather than treat AI governance as an abstract problem, we urge poli-
cymakers to rely on the rich, empirical record of past engagements to con-
ceptualize and respond appropriately to present-day challenges. History 
offers a repository of multiple, overlapping, real-world instances in which 
technical experts, policymakers, and broader publics have grappled with 
once-new technologies. Commentators and policymakers too often focus 
narrowly on one historical episode or analogy when thinking about the 
challenges of novel technologies—most commonly turning to the sprawling 
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Manhattan Project during the Second World War or life scientists’ famous 
meeting at Asilomar in the mid-1970s. Yet considering multiple analogies 
and disanalogies can elucidate complementary axes along which to assess 
likely harms and potential benefits.

In this brief paper, we consider three historical episodes: the early nu-
clear weapons complex during the 1940s and 1950s; biotechnology, biomed-
icine, and the implementation of various safeguards in the 1970s; and the 
adoption and oversight of forensic technologies within the US legal and 
criminal justice systems over the course of the past century. Each example 
offers distinct insights for understanding opportunities and risks associated 
with AI today. As we discuss, each of the past examples required a broad 
range of actors to think at different scales: national and global security, the 
health of local communities, and individuals’ civil rights. No example of-
fers a perfect analogy with present-day challenges; yet even the disanalo-
gies can help clarify realistic options for decision-making today.

As each of the previous historical episodes make clear, the scientific and 
technical communities have often taken on special roles in establishing 
norms regarding how to define and protect the public interest. Yet in none 
of these previous instances did scientists and technologists hold unilateral 
sway over how the new technologies would be assessed, deployed, or gov-
erned. History offers the opportunity to consider how each previous effort 
succeeded in some ways but fell short in others. Across each example, we 
therefore identify three key themes for thinking about the governance of 
AI today: the inadequacy of researchers’ self-policing to produce meaning-
ful safeguards on impactful technologies that move beyond controlled lab-
oratory settings; the necessity of broad-gauge input and oversight to sustain 
an innovation ecosystem; and finally, the need for recurring reviews to reg-
ularly reassess evolving technologies and the shifting social practices within 
which they are embedded.

Part 1: Nuclear Secrets

The path from basic discoveries in nuclear science to sprawling weapons 
programs was dizzyingly short. The first indication of nuclear fission caught 
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chemists Otto Hahn and Fritz Strassmann by surprise in their Berlin labo-
ratory in December 1938. Immediately upon receiving an update from Hahn 
by letter, the recently exiled theoretical physicist Lise Meitner and her 
nephew, Otto Robert Frisch, developed a remarkable interpretation: Under 
certain circumstances, bombardment of a heavy nucleus such as uranium 
by neutrons could split the nucleus and release additional energy.1 Hahn, 
Strassmann, Meitner, and Frisch each communicated their results in 
rapid-fire scientific publications as well as via informal discussions with 
colleagues; within weeks, scientists around the world began pursuing fol-
low-up studies. Frisch’s mentor, Niels Bohr, teamed up with another protégé, 
American physicist John Wheeler, to produce a detailed theoretical analy
sis of nuclear fission. Their landmark article was published in the Physical 
Review on September 1, 1939, just as Nazi tanks invaded Poland, triggering 
the start of the Second World War.2

Even before the Bohr–Wheeler paper had been published, scientists in 
at least five countries had recognized the possibility that nuclear fission 
could be used to create a new type of weapon and had initiated discussions 
with government officials. In April  1939, the German Reich Ministry of 
Education held a secret meeting on military applications of nuclear fission 
and banned uranium exports. That same month, the Japanese government 
launched “Project Ni” to study possible weapons effects of fission, while, in
dependently, several physicists in Britain urged their government to jump-
start a nuclear weapons project by securing uranium ore from the Belgian 
Congo. In August  1939, Albert Einstein signed a letter to US President 
Franklin Roosevelt—which had been written by concerned émigré physi-
cists Leo Szilard and Eugene Wigner—alerting Roosevelt of the possibility 
that nuclear weapons could exploit runaway fission chain reactions. A few 
weeks later, Leningrad physicist Igor Kurchatov informed the Soviet gov-
ernment about possible military applications of nuclear fission.3

Given the plausible connections between nuclear fission and new types 
of weapons—and set against the drumbeat of worsening international 
relations—some scientists sought to control the flow of information about 
nuclear fission. Beginning in spring 1939, Hungarian physicist Leo Szilard, 
who had fled Europe and landed in New York City, urged his colleagues 
to adopt a voluntary moratorium on publishing new results. When some 
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physicists refused to withhold their latest findings, Szilard concocted 
a  new plan to allow researchers to submit their articles to scientific 
journals—which would enable clear cataloging of priority claims—but 
coordinate with the journal editors to hold back publication of certain 
papers until their release could be deemed safe. This scheme, too, proved 
difficult to implement in practice, not least because it depended upon 
voluntary compliance, with no means of enforcement.4 It also had some 
unintended consequences. When Kurchatov and his colleagues in the So-
viet Union noticed a distinct falloff of publications in the Physical Review 
regarding nuclear fission, they considered their suspicions confirmed and 
doubled down on their efforts to convince Soviet officials to take the matter 
seriously.5

Szilard’s proposals focused on controlling the flow of information rather 
than regulating research itself. That distinction disappeared once the Al-
lied efforts on nuclear weapons became more formalized, scaling up from 
lackluster study groups to the Manhattan Engineer District in June 1942. 
Under the auspices of the newly formed Office of Scientific Research and 
Development (OSRD) and administered by the US Army Corps of Engi-
neers, officials in the Manhattan Project imported older procedures for 
military secrecy and provisioning—some dating to the 1917 US Espionage 
Act, enacted in a hurry after the United States had entered the First World 
War—to exert control over the circulation of information, materials, and 
personnel. The US Federal Bureau of Investigation (FBI) and the Military 
Intelligence Division conducted background checks on researchers; Gen-
eral Leslie Groves imposed strict compartmentalization rules to try to limit 
how much information any single individual could glean about the sprawl-
ing project; massive infrastructure was devoted to producing fissionable ma-
terials within secret facilities at places like Oak Ridge, Tennessee, and 
Hanford, Washington; while more mundane materials, such as rubber 
and gasoline—by then under strict wartime rationing—were diverted to 
the high-priority project.6

Over the course of the war, older conventions regarding secrecy and 
classification were updated and specialized to the case of nuclear weap-
ons. These newer routines were formalized with passage of the US Atomic 
Energy Act in August 1946. Although the Act transferred control over the 
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nuclear complex from the War Department to a new civilian agency—the 
Atomic Energy Commission (AEC)—in many ways the AEC reinforced 
wartime procedures. Under the new law, for example, whole categories of 
information about nuclear science and technology were deemed to be “born 
secret,” that is, classified by default and only released following careful re-
view. The Act also established a government monopoly over the develop-
ment and circulation of various fissile materials within the US, effectively 
foreclosing efforts by private companies to pursue civilian nuclear power 
generation. (Several of these provisions of the Act were amended in 1954, 
with the explicit goal of fostering private-sector efforts in nuclear power, 
but with mixed results.7)

Policymakers crafted these regulatory developments amid specific 
domestic and international considerations. On the international front, 
mutual suspicions between officials in the United States and the Soviet 
Union—exacerbated by the shocking revelation in February 1946, follow-
ing the defection of a Soviet cipher clerk, that the Soviets had conducted 
espionage at several Manhattan Project sites during the war—derailed early 
efforts to establish international control of nuclear science and technology. 
Domestically, long-standing rivalries between various military branches 
shaped debates over nuclear weapons policies, including whether the United 
States should pursue next-generation weapons such as thermonuclear (or 
fusion) bombs.8

Much as Szilard had done as early as 1939, after the war many scientists 
and engineers worked hard to help shape the evolving landscape of prac-
tices and norms around nuclear science and technology. Some, like J. Rob-
ert Oppenheimer, moved from leadership positions in the wartime program 
into influential consulting roles after the war. Oppenheimer helped draft 
several proposals for postwar nuclear policies and chaired the new General 
Advisory Committee of the AEC. Others, especially younger colleagues, 
formed new organizations like the Federation of Atomic Scientists to lobby 
lawmakers for their preferred policy outcomes, such as civilian (rather than 
military) control of the postwar nuclear complex, and in support of nuclear 
disarmament.9

Before long, however, the scientists’ illusions of control collapsed 
amid Cold War realities. Right on the heels of their major legislative 
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victory—ensuring passage of the Atomic Energy Act that enshrined 
civilian oversight—groups like the Federation of Atomic Scientists became 
targets of a concerted campaign. The FBI and the US House Committee on 
Un-American Activities targeted the Federation and several of its indi-
vidual members, smearing them with selective leaks and high-profile hear-
ings, alleging Communist sympathies.10 Oppenheimer’s infamous hearing 
in June 1954 before an AEC personnel security board was a late example of 
what had long since become routine. In fact, a disproportionate number 
of younger, more vulnerable nuclear physicists were affected by domestic 
anti-communism than representatives of any other academic discipline 
during the decade after the end of the Second World War. The elaborate 
system of nuclear classification became a cudgel with which to silence crit-
ics, whose attorneys were often denied access to information under the 
guise of protecting national security.11

Beyond the impact on individuals and groups, the postwar nuclear clas-
sification regime strained relationships with US allies—most notably the 
United Kingdom—while remaining relatively ineffective at halting nuclear 
proliferation. Within a few years after the war, the Soviet Union built both 
fission and fusion bombs with a speed that caught many US authorities off 
guard; those efforts were aided, in part, by wartime espionage that had 
pierced military control. Arguably, overzealous efforts at nuclear secrecy 
helped to accelerate the arms race, exacerbating the precarious brinks-
manship of a protracted Cold War and triggering all-too-hot proxy wars 
around the globe.12

As policymakers ask questions today about allowing researchers to de-
ploy, withhold, or partially disclose new computational models and tech-
niques, the example of nuclear secrecy infrastructure provides important 
cautions about bureaucratic overreach and political abuse. During the post-
war years, few scientists, engineers, or policymakers suggested that all in-
formation about nuclear weapons or related technologies should be openly 
shared—proliferation concerns were real and some safeguards were clearly 
appropriate. Yet the complex system of nuclear classification and control 
quickly grew so byzantine that legitimate research inquiries were cut off, 
responsible private-sector investment was stymied, and open political 
debate was squashed.13 As the secrecy regimes grew in complexity and 
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extensiveness, the academic community often served as a weak but cru-
cial counterbalance to maintain, or at least seek to maintain, the levels of 
openness necessary for robust scientific progress and democratic oversight.

Part 2: Biotechnology and Biomedicine

Leo Szilard’s first impulse, upon learning about nuclear fission in 1939, 
had been to try to convince his fellow scientists to adopt a voluntary mor-
atorium on publishing certain findings. Several decades later, in the mid-
1970s, a group of molecular biologists followed a similar route, urging their 
colleagues to pause research involving the new techniques of recombinant 
DNA (rDNA). The call by Stanford biologist Paul Berg, together with col-
leagues from several other elite US universities and research sites, moved 
beyond Szilard’s earlier intervention: They pressed for a voluntary morato-
rium on certain types of research, not only on publication.14

By the spring of 1974, Berg and his colleagues had grown concerned 
about potential risks of rDNA research, even as they anticipated many ben-
eficial outcomes. What if pathogenic bacteria acquired antibiotic-resistant 
genes, or carcinogenic genes were transferred to otherwise harmless micro-
organisms? Unlike the massive, top secret industrial sites of the wartime 
Manhattan Project, rDNA experimentation involved relatively small-scale, 
benchtop apparatus, and hence could be pursued within nondescript lab-
oratories in urban centers—such as at Berg’s and colleagues’ universi-
ties. What types of containment facilities and safety protocols could 
protect researchers as well as their neighbors from possible leaks of dan-
gerous biological materials? How could the risks of various research proj
ects be assessed and mitigated?15 As MIT’s David Baltimore recalled soon 
after Berg and colleagues met in his office to brainstorm about their con-
cerns, “we sat around for the day and said, ‘How bad does the situation 
look?’ And the answer that most of us came up with was that . . . ​just the 
simple scenarios that you could write down on paper were frightening 
enough that, for certain kinds of limited experiments using this technol-
ogy, we didn’t want to see them done at all.”16 Berg, Baltimore, and their 
small group published a brief, open letter calling for a voluntary moratorium 
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on rDNA research—it appeared in Science, Nature, and the Proceedings of 
the National Academy of Sciences—until the scientific community could 
address such concerns.17

By the time their letter appeared in print, the Berg group had been 
deputized by the US National Academy of Sciences to convene a meeting 
of colleagues and develop recommendations for the US National Insti-
tutes of Health (NIH). Famously, that meeting was held in February 1975 
at the Asilomar Conference Grounds in Pacific Grove, California. Berg, 
Baltimore, and their original discussion mates were joined by other emi-
nent biologists, including Maxine Singer and Sydney Brenner. Much like 
the group that had met at MIT the previous spring, the Asilomar group 
consisted almost entirely of researchers in the life sciences.18 They recom-
mended a temporary extension of the voluntary research moratorium 
combined with a framework for assessing risks and appropriate contain-
ment facilities for various types of rDNA experiments. In late June 1976, the 
US Department of Health, Education, and Welfare released the official 
guidelines that would govern rDNA research by NIH-funded researchers 
throughout the United States, which drew extensively upon the Asilomar 
recommendations.19

To this day, the Asilomar meeting is routinely hailed as the preeminent 
example of how scientists can successfully and responsibly govern risky re-
search: Concerned scientists spoke up, urged restraint upon their col-
leagues, and forged new guidelines among themselves. Yet much like 
Szilard’s calls for nuclear scientists to self-censor during the early days of 
nuclear fission, the biologists’ self-policing around rDNA was a small part 
of what grew into a much larger process—one that involved input and ne-
gotiation among a much wider set of stakeholders.20 On the very evening 
in June 1976 that federal officials announced the new NIH guidelines, the 
mayor of Cambridge, Massachusetts—home to famously difficult-to-govern 
research institutions like Harvard University and MIT—convened a spe-
cial Hearing on Recombinant DNA Experimentation. As Mayor Alfred Vel-
lucci announced upon opening the special session, “No one person or 
group has a monopoly on the interests at stake. Whether this research takes 
place here or elsewhere, whether it produces good or evil, all of us stand to 
be affected by the outcome. As such, the debate must take place in the 
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public forum with you, the public, taking a major role.”21 And so began a 
remarkable months-long effort by local university researchers, private-
practice physicians, city officials, and other concerned citizens to devise an 
appropriate regulatory framework that would govern rDNA research within 
Cambridge city limits—under threat of a complete ban if the new Cam-
bridge Experimentation Review Board (CERB) failed to converge on rules 
that could pass muster with the city council.22

The CERB group held open, public meetings twice weekly throughout 
the autumn of 1976. During the sessions, Harvard and MIT researchers 
had opportunities to explain details of their proposed research to nonspe-
cialists; on other evenings, CERB hosted public debates over proposals for 
competing safety protocols. Similar civic groups met to hash out local reg-
ulations in cities across the United States, including Ann Arbor, Michigan; 
Bloomington, Indiana; Madison, Wisconsin; Princeton, New Jersey; as 
well as Berkeley and San Diego in California. In none of these jurisdictions 
did citizens simply adopt the scientists’ Asilomar recommendations with-
out thorough discussion, scrutiny, and debate. For example, the CERB 
group called for the formation of a new five-person Cambridge Biohazards 
Committee plus regular site inspections of rDNA labs within city limits, ex-
ceeding the requirements of the federal NIH guidelines. Only after CERB’s 
extensive, at times thorny, negotiations did the Cambridge city council vote 
unanimously, in early February 1977, to adopt the locally written Ordinance 
for the Use of Recombinant DNA Molecule Technology within the city—
two years after the Asilomar meeting.23

With the carefully negotiated Cambridge ordinance in place, the city 
quickly became a biotechnology juggernaut, earning the nickname “Gene-
town.” City officials, university administrators, laboratory scientists, and 
neighboring nonscientists had worked together to construct a clear regula-
tory scheme within which new types of scientific research could thrive—
both within university settings and quickly within spin-off biotech 
companies as well.24 The extended effort of public participation and debate 
helped to establish a new level of public trust, while avoiding Manhattan 
Project–style monopolies.

In parallel with the rDNA efforts, biomedical researchers, policymak-
ers, and regulators across the United States forged a separate regulatory 
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framework during the 1970s, which likewise required life scientists to work 
closely with concerned nonscientists. Following headline-grabbing revela-
tions of egregious abuses of participants in previous biomedical studies—
including the long-running Tuskegee Syphilis Study on Black men in rural 
Alabama—the US Congress passed the National Research Act in 1974. The 
Act stipulated the creation of a new national commission that would rec-
ommend uniform requirements to protect individuals who were involved 
in research studies.25

In 1979, the commission published the Belmont Report, articulating 
general principles and specific practices regarding the treatment of “human 
subjects” in federally funded research. Among the new requirements: en-
suring that participants in research studies granted “informed consent,” and 
that potential risks to individual participants were appropriately balanced 
by potential benefits of a given study. To evaluate and oversee such require-
ments, the National Research Act codified that federally funded research 
involving human subjects must be reviewed by a local “institutional review 
board,” or IRB, whose membership had to include individuals with a range 
of experiences and expertise. At least one member of each IRB had to rep-
resent “nonscientific” concerns.26

Much like the CERB process in Cambridge, the National Research Act 
required biomedical researchers—at least those working with federal 
funds—to negotiate safe and effective research practices, with input and 
oversight extending beyond the research community itself. Imperfect and 
at times frustratingly bureaucratic, the new IRB infrastructure did not force 
all research to grind to a halt. Rather, it formalized a set of practices that 
had been honed within NIH’s own research centers to mitigate real harms.27

The 1974 National Research Act and the 1979 Belmont Report were forged 
in response to specific concerns at the time. Although the so-called Com-
mon Rule (US federal law 45 C.F.R. 46) which governs research on human 
subjects has been updated as recently as 2017, the current provisions still 
do not map effectively to more recent forms of research involving human-
sourced data and information, especially those for which potential harms 
need not arise at the point of data collection.

As technical systems come to depend on more and more sensitive data, 
these regulatory regimes are clearly insufficient, especially when researchers 
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are separated from data collection by relying on third-party vendors.28 
Few if any individuals have granted consent (informed or otherwise) for 
their personal data, medical records, or facial images to be used as training 
data for such massive algorithmic projects. Likewise, although the Com-
mon Rule includes clear definitions of “identifiable private information” that 
is to be protected for study subjects, recent computational projects that rely 
upon amassing and analyzing large datasets routinely violate stated privacy 
protections, even when manipulating “deidentified” datasets.29

Part 3: Forensic Science

Whereas scientists like Leo Szilard and Paul Berg tried to quickly craft 
guardrails around the scientific work they were developing, John Larson was 
eager to deploy his latest innovation: the cardio-pneumo-psychograph de-
vice, or “polygraph.” Larson’s goal was not new; uncovering submerged 
human truths had long been a goal of physiological inquiry. Nineteenth-
century physicians were particularly interested in the way the body could 
betray the mind. Étienne-Jules Marey, for example, took physical mea-
surements of small changes to reveal stress, with the conviction that such 
measurements could reveal a hidden interior truth.30 By the early twentieth 
century, leading psychologists were working to operationalize the emerging 
consensus that emotions were bodily. In 1917, William Moulton Marston 
and his wife Elizabeth Holloway Marston invented a form of the polygraph, 
but within a few years, Larson had added two crucial insights. The first was 
to take continuous measurements of blood pressure and record them as one 
running line, monitoring change relative to a baseline. The second was to 
partner with law enforcement.31

In the spring of 1921, Larson tried out his technology to solve a real 
crime, a potboiler-style drama of a missing diamond presumed stolen by 
one of ninety women living in a boarding house. The thief, whose recorded 
blood pressure did drop precipitously during her interrogation, eventually 
confessed after days of additional interrogation. With journalists eager for 
gripping narratives about the latest crime, the cardio-pneumo-psychograph 
made great copy, but to Larson’s chagrin, it was renamed the “lie detector.” 
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Historical accounts even credit newspapers with pressuring police in other 
jurisdictions to further adopt the tool. For August Vollmer, the chief of 
police in Berkeley, California, the cardio-pneumo-psychograph was par-
ticularly appealing because it could help professionalize law enforce-
ment. Concerned with perceptions of a corrupt police force that relied on 
personal relations and intuitions, Vollmer was enthusiastic to experiment 
with new “scientific” policing. Although the methods were unproven, 
Vollmer believed that the patina of scientific expertise gained by enrolling 
Larson would bolster public support for local law enforcement.32

From the beginning, the polygraph was a “charismatic” technology that 
captured public interest.33 It inspired popular depictions that led to the poly-
graph’s widespread deployment beyond routine police work or formal 
legal settings. Some of these uses were relatively banal, such as trying to un-
derstand what drew certain audiences to films or actors. But the stakes of 
this unreliable technology grew in more impactful domains like employ-
ment. For example, adherence to the Cold War nuclear secrecy regime was 
policed through polygraph tests for adjudicating and maintaining security 
clearances. Beyond the nuclear complex, employers saw the polygraph as a 
useful screen for job suitability, despite its unreliability and recurring 
biases.34

Judges were less willing to accept the polygraph starting in 1922, with 
the trial of James Frye. Frye had previously confessed to the murder in ques-
tion but claimed that his confession had been coerced. William Marston 
performed a polygraph test to validate Frye’s claim. After a cursory review, 
the judge rejected the polygraph as evidence. The subsequent “Frye Rule” 
was designed to prevent scientific developments that were still undergoing 
development from entering the courtroom. Instead, a methodology like us-
ing polygraph machines would require “general acceptability” by the sci-
entific community. This standard encoded a belief that juries would be 
distinctly swayed by supposedly objective scientific evidence produced by 
a machine like the polygraph.35

In practice, the Frye Rule did not prevent deeply questionable evi-
dence from entering court proceedings—let alone from circulating be-
yond formal legal settings. In 1993, Daubert v. Merrell Dow Pharmaceuticals 
offered a new standard to replace the Frye Rule by further empowering 
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judges to act as gatekeepers of expert testimony about novel technolo-
gies. It asked judges to think like scientists who evaluated peer-reviewed 
expertise. The goal remained the same: The courts would not be a place 
for radical experimentation with novel technologies.36 (As recently as 
December  2023, amendments to the US Federal Rule of Evidence 702 
have aimed to clarify that expert testimony in trial is to be treated as 
the expert’s opinion, and that the proponent of introducing such testi-
mony must meet a burden-of-evidence standard for such testimony to be 
admissible.37)

Either relying on their own judgment or assessing the consensus views, 
judges needed to assess basic validity claims about lie detection. In turn, 
the scientific community repeatedly mobilized to limit the use of polygraphs 
in court. The US Office of Technology Assessment (OTA) concluded in a 
1983 report that there was “only limited scientific evidence for establishing 
the validity of polygraph testing.”38 Again, the discrepancy between crimi-
nal law within a courtroom and deployment of the technology in other 
high-stakes arenas remained stark. The resistance to the polygraph from 
multiple experts in the most regulated legal sphere of criminal law was 
matched by an unchecked spread of the technology in other important 
spheres. The same OTA report estimated that outside of the federal govern-
ment, more than one million polygraph tests were administered annually 
within the United States just to determine employment.39 More recently, the 
US National Academies led efforts to (again) scrutinize evidence on the re-
liability of the polygraph.40 The 2003 report has played a crucial role in 
keeping the polygraph out of courtrooms.

In contrast to polygraph evidence, other science-based techniques have 
long been incorporated within legal proceedings in the United States, such 
as fingerprint analysis. Although far from perfect, the use of fingerprint 
identification techniques within law enforcement and legal settings has been 
subject to expert review, training, and standardization for decades.41 More-
over, high-profile misidentifications—such as the one in 2004 that led to 
the wrongful imprisonment of an American lawyer living in Oregon 
on charges related to the terrorist bombing of commuter trains in Ma-
drid, Spain—catalyzed multiple reviews by expert panels to reassess the 
underlying scientific bases for fingerprint identifications and to update 
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best-practice procedures for their use, including new types of training for 
practitioners.42

Algorithmic facial recognition technology has followed a trajectory 
more like the polygraph than like fingerprinting. Despite its significant, 
well-documented flaws, facial recognition technology has become ubiqui-
tous in high-stakes contexts outside the courtroom.43 A few years ago, the 
US National Institute of Standards and Technology (NIST) conducted a de-
tailed evaluation of nearly 200 distinct facial recognition algorithms, from 
around 100 commercial vendors. Nearly all of the machine-learning algo-
rithms demonstrated enormous disparities, yielding false-positive rates 
more than 100 times higher when applied to images of Black men from West 
Africa compared to images of white men from Eastern Europe; the NIST 
tests also found systematically elevated false-positive rates when applied to 
images of women than men across all geographical regions.44 In the face of 
such clear-cut biases, some scholars have called for increased inclusion in 
the datasets—in theory broadening the types of faces that can be recog-
nized.45 Others have argued that inclusion is the problem rather than the 
solution, and that the imperative to include more data puts identified and 
misidentified citizens at increased risk, without legal recourse.46

Although the research community has identified these stark demo-
graphic biases and thousands of research papers have focused on ways to 
mitigate such disparities under pristine, laboratory conditions, the commer-
cially available algorithms have already moved well beyond research spaces 
and into impactful real-world settings.47 Within the United States alone, 
thousands of distinct law enforcement jurisdictions can purchase commer-
cial facial recognition technologies, subject to no regulation, standardiza-
tion, or oversight. This free-for-all has led to multiple reports of Black men 
being wrongfully arrested due to a combination of failures, for example, in-
adequate technical calibrations for the various algorithms together with 
human failures to follow recommended procedures following a putative fa-
cial image match within an active police investigation, such as seeking ad-
ditional eyewitness testimony or forensic evidence from the crime scene.48

These continuing real-world failures—which exacerbate long-standing 
inequities within existing institutional frameworks—are likely to worsen 
in the absence of any oversight or regulation.49 There already exist more 
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than one billion surveillance cameras across fifty countries. Within the 
United States alone, facial images of half the adult population are already 
included in databases accessible to law enforcement.50

Like the polygraph, these faulty unregulated technologies have already 
moved far beyond both laboratory and law enforcement settings. In some 
cases, they have generated sensational claims that far outstrip technical fea-
sibility, such as a widely covered 2018 study that claimed that algorithmic 
analysis of facial images could determine an individual’s sexual orienta-
tion.51 Meanwhile, private vendors continue to scoop up as many facial im-
ages as they can, almost always from platforms for which the people depicted 
neither granted permission for such uses nor were aware of the third-party 
data collection.52 In turn, facial surveillance is now used to surveil all sorts 
of new contexts, including monitoring students’ behavior in school, prevent-
ing access to venues, and even screening for jobs.53

Conclusions

AI policy is marked by a recurring problem: a sense that AI itself is difficult 
or even impossible to fully understand. Scholars have shown how machine 
learning relies on several forms of opacity: corporate secrecy, technical 
complexity, and unexplainable processes.54 Scientists have a special obliga-
tion to push against that opacity. In fact, as these examples show, at its best 
the scientific community has worked closely with diverse communities to 
build broad coalitions of researchers and nonresearchers to assess and re-
spond to risks. History offers both hope that building such collective pro
cesses are possible and repeated notes of caution about the difficulties of 
sustaining such necessary work. Three principles that emerge from across 
these historical case studies should inform how the scientific community 
leads present-day AI governance.

1.	 Self-policing is not enough: Researchers’ voluntary moratoriums 
on publication or on specific research practices has rarely (if ever) 
proven sufficient, especially once impactful technologies have 
moved beyond controlled laboratory settings. Scientists and 
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engineers have been particularly poorly equipped to anticipate 
the ways in which public narratives about technologies would 
shape expectations and uses.

2.	 Oversight must extend beyond the research community: Broad-
gauge input and oversight has repeatedly proven necessary to 
sustain an innovation ecosystem. Extended debate and negotia-
tion among researchers and broader groups of nonspecialists can 
build public trust and establish clear regulatory frameworks, 
within which research can expand across academic and private-
sector spaces.

3.	 Recurring reviews are necessary: In-depth reviews, conducted by 
reviewers that include specialists and broader communities of 
concerned stakeholders, should regularly reassess both the evolv-
ing technologies and the shifting social practices within which 
they are embedded. Only then can best practices be identified and 
refined. These reviews are most effective when they build on ex-
isting civic infrastructures and civil rights.

In all three historical examples, scientists and engineers were eager to act 
justly and to put bounds around novel technologies to mitigate potential 
risks. Yet these experts could not anticipate the ways in which official or 
popular enthusiasm would lead these innovations to spread in unexpected 
ways. For example, researchers did not predict the rise of an elaborate Cold 
War national security secrecy infrastructure, the reactions from Cambridge 
residents to fears of accidents or leaks involving dangerous pathogens, or 
the popular enthusiasm (despite legal skepticism) for the polygraph. These 
off-label uses, far beyond the reach of laboratory controls or formal legal 
strictures, have posed particular dangers to broader communities.

Nonetheless, by speaking decisively about risks, articulating clear gaps 
in knowledge, and identifying faulty claims, scientists and technologists—
working closely with colleagues beyond the research community—have suc-
cessfully established regulatory and governance frameworks within which 
new technologies have been developed, evaluated, and improved. The same 
commitment to genuine partnerships beyond the research community must 
guide governance of exciting—yet risky—AI technologies today.
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CHAPTER 5

Navigating AI Governance as a Normative  

Field: Norms, Patterns, and Dynamics

Urs Gasser

Introduction

This article conceptualizes AI governance as an emerging normative field 
by offering a series of analytical lenses and a set of initial observations aimed 
at contributing toward a navigation aid for what promises to be a rapidly 
evolving and complex ecosystem. The main objective of this contribution 
is to make visible the broad range of approaches, strategies, and instruments 
available in the governance toolbox as decision-makers in the public and 
private sectors seek to anticipate, analyze, and address harms and risks as-
sociated with the accelerating pace of AI development, deployment, and use 
while harnessing its potential for humans, society, and the planet at large.

This article is written at a moment in time when a myriad of AI gover-
nance initiatives are underway at the national, regional, and global levels, 
involving a broad range of actors, incentives, and interests. Such efforts 
range from comprehensive legislative projects like the EU AI Act1 and 
whole-of-government efforts like the US Executive Order on Safe, Secure, 
and Trustworthy AI2 and its accompanying implementation initiatives, to 
voluntary commitments and best practice frameworks. They include local 
governance interventions at the city level and international initiatives put 
forward by organizations like the Council of Europe,3 the United Nations,4 
or G75 and G20,6 to name just a few examples. Other important components 
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of evolving AI governance arrangements include ethical as well as techni-
cal standards, developed again across all levels of governance, ranging from 
company-level to international-level.

Taken together, AI governance as a “hot field” (borrowing a term coined 
by sociologist Robert Merton) consists of a heterogeneous set of principles, 
norms, rules, standards, and decision-making procedures. In governance 
parlance, it fits within the broader concepts of multilevel, multiactor, and 
multimodal governance, despite recent trends toward an enhanced role of 
governments as regulators.7 At least at present and for the foreseeable future, 
AI governance can be understood as a case of polycentric governance, to 
invoke a concept developed by Elinor Ostrom,8 with multiple centers of 
decision-making and overlapping responsibilities, without a single entity 
that has the ultimate authority for making all collective decisions.

Given the polycentric nature and fluid state of AI governance, this con-
tribution does not aim to describe or evaluate any single effort in greater 
depth or to arrive at policy recommendations. Rather, it seeks to offer a se-
ries of lenses through which contemporary initiatives can be analyzed and 
contextualized. Such a descriptive approach might inform future norma-
tive frameworks by offering a sense of various approaches and instruments 
available and by highlighting some of the factors shaping their application.

The first section frames AI governance as a normative field and situates 
it within the broader context of ever-evolving technology as a socially em-
bedded venture shaped by numerous factors and forces at play. The follow-
ing section, “Approaches to AI Governance,” offers several elements of a 
possible taxonomy of approaches to AI governance that shape the contours 
and interactions among a diverse set of principles, norms, rules, standards, 
and decision-making procedures. It suggests a number of lenses that might 
be useful when understanding and navigating the range of options avail-
able to steer the development, deployment, and use of AI. Embracing the 
complexity and heterogeneity of AI governance as a normative field, the sub-
sequent section, “Mapping Normative Patterns,” seeks to identify a series 
of normative patterns within and across different AI governance arrange-
ments, with a focus on recent legal developments. The last sections of the 
chapter aim to demarcate conceptual zones of convergence, divergence, and 
possible interoperability across different AI governance arrangements 
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(“Selected Nodes of AI Governance”), and to offer final considerations for 
AI governance-making as shaping the further evolution of a normative 
field (“AI Governance for an Uncertain Future”).

AI Governance as a Normative Field

This section frames AI governance as a normative field, starting with a 
working definition, followed by a brief overview of some of the most salient 
initiatives and building blocks of AI governance arrangements both nation-
ally and internationally. By briefly contextualizing AI governance in a 
broader social context, it also offers a reminder that neither the technology 
nor efforts to govern it have emerged in a vacuum.

Defining AI Governance

Defining the contours of AI governance is not an easy task.9 The definition 
of what accounts for AI has been contested all along and varies across con-
texts and actors. Despite various efforts, a uniform standard definition has 
not emerged yet—and even some of the most influential definitions are sub-
ject to updates, as the recent definitional amendments to AI Guidelines of 
the Organisation for Economic Co-operation and Development (OECD) il-
lustrate.10 The challenge of defining where AI governance starts and where 
it ends is further exacerbated not only because the term AI is contested but 
also because the notion of governance is a highly amorphous concept with 
many meanings across different cultural and application contexts.11 Ques-
tions of terminology seem mostly of academic interest at first, and it is strik-
ing that languages generally have received relatively little attention in 
contemporary AI conversations. But when entering the regulatory arena, 
more precise understandings of certain terms matter greatly and have real-
world consequences, as the struggles to specify the many newly introduced 
terms in the EU AI Act might illustrate.

This article avoids a sharp definition of the subject it seeks to explore 
and takes a pragmatic approach. With respect to AI, the updated definition 
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by the OECD serves as the term’s core with a halo around it, reflecting 
broader definitions used in other norm complexes aimed at steering the de-
velopment, deployment, and use of AI across a spectrum of open and 
closed technological and organizational settings. Similarly, a pragmatic un-
derstanding of the concept of governance is adopted, embracing a diversity 
of modalities of norms (from ethical principles to hard law), different lev-
els of governance (from local to global), and a range of actors involved in 
such efforts (from professional associations to lawmakers).

Taking these elements together, AI governance can be circumscribed 
as the sum of all coexisting forms of collective regulation of matters as-
sociated with machine-based systems, which infer from inputs how to 
generate outputs that have the potential to influence physical or virtual 
environments.

Emerging AI Governance Arrangements

Fueled by an accelerating pace of innovation in AI research, development, 
and deployment, debates about the needs for and modalities of AI gover-
nance have intensified in recent years, spanning local to global levels. A 
broad range of stakeholders has launched various initiatives to set up dedi-
cated guardrails for AI-based technologies, starting with several hundred 
AI ethics principles initiatives,12 followed by hundreds of legislative and reg-
ulatory interventions,13 as well as a plethora of standard-setting and best 
practice efforts. Among the many initiatives, the following flagship efforts 
with the potential for international impact serve as reference points in this 
chapter:

•		Canada’s Draft Artificial Intelligence and Data Act14 introduces 
guardrails to ensure that AI systems deployed in Canada are safe 
and nondiscriminatory and creates accountability mechanisms for 
businesses as they develop and use AI-based technologies.

•		China’s Interim Generative AI Measures15 seek to encourage and 
guide the responsible use of generative AI with respect for national 
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security while making everyone who develops and uses generative 
AI products to provide services to the public in China subject to 
government oversight.

•		Brazil’s Draft Artificial Intelligence Act16 seeks to create rules for 
making AI systems available in Brazil, establish rights for people 
affected by their operation, provide penalties for violations, and set 
up a supervising body.

•	 	EU’s AI Act17 is a comprehensive draft law aimed at addressing 
the risks of AI through a broad range of obligations and require-
ments to safeguard the health, safety, and fundamental rights of 
citizens. It seeks to ensure the proper functioning of the EU 
single market by setting consistent rules for AI systems across 
the EU.

•		US Executive Order on Safe, Secure, and Trustworthy AI18 estab-
lishes new and whole-of-government standards for government 
agencies to address safety and security risks associated with the de-
velopment and use of AI in the social, economic, and national se-
curity spheres.

These initiatives only provide a subset of the diverse AI governance ar-
rangements at the national level. The US AI governance landscape, for 
instance, consists of an amalgam of norms, which includes—in addition 
to the Executive Order and bills such as the US Algorithmic Accountabil-
ity Act19—sector-specific initiatives (e.g., in the health and transportation 
sectors) and legislation at the state and city level, in addition to a broad 
range of soft law instruments ranging from an AI Bill of Rights20 to volun-
tary commitments by leading AI companies, numerous ethical principles 
by private and public sector entities, and technical standards by standard-
setting organizations such as the National Institute of Standards and 
Technology (NIST),21 to name just a few AI governance sources.

Other nation states—including the United Kingdom, India, Japan, 
Singapore, and Switzerland—have taken a different route so far (note 
that things remain in flux) by either pursuing a sectoral approach to 
AI governance or refraining from the use of hard law while promoting 
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the responsible development, deployment, and use of AI through non-
binding governance mechanisms such as guidelines, best practices, and 
standards.

While some of these efforts at the national and regional level target AI 
specifically as a distinct set of technologies using different techniques and 
methods, AI governance has not emerged in isolation. Existing general 
guardrail regimes, among other factors discussed subsequently, provide the 
relevant normative context in which more specific interventions now take 
place.

Contextualizing AI Governance

AI governance, like AI itself, should not be considered in isolation but 
rather contextualized as part of a social fabric of norms and stabilized ex-
pectations, ranging from formalized policies and laws to often more im-
plicit cultural values and attitudes.22 They shape and limit what is possible, 
feasible, and desirable within a given ecosystem when addressing the broad 
range of opportunities and challenges associated with AI through means 
of governance.

Approaches to AI governance arrangements are situated within broader 
economic, social, environmental, technology, and regulatory policies of 
countries. Within these general parameters, many nations have enacted na-
tional AI strategies, which often also outline the contours of the envisioned 
AI regime.23 A comparative analysis of AI strategies across twenty-two 
countries suggests a typology of prescribed governance approaches, result-
ing in a matrix with strong versus weak state interventions on one axis and 
stimulation versus enclosure-and-control approaches on the other. Differ
ent roles of the state in AI governance can be mapped onto each resulting 
quadrant, indicating certain levels of activity and the use of preferred gov-
ernance instruments.24

Preexisting laws are another contextual element, as briefly mentioned. 
Consider, for instance, how relatively relaxed privacy laws or safe harbor 
provisions have contributed to an AI innovation-friendly ecosystem in the 
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United States.25 Conversely, other sets of norms have arguably constrained 
some of the conditions conducive to AI advancement. While the empirical 
effects of stricter data protection laws in Europe on the development and 
adoption of AI remain contested, some studies suggest that the General Data 
Protection Regulation (GDPR) and particularly more stringent enforcement 
actions shaped important dimensions of the research and innovation 
ecosystems.26

The relevant context of AI governance is of course not limited to policy 
and law. Powerful forces that shape the present and future of AI governance 
originate from the spheres of economic and national security interests—an 
important nexus that goes beyond the scope of this chapter.27 For context, 
it suffices to acknowledge that the shapes both of general legal norms and 
specific AI guardrails are heavily influenced by the political economy, 
understood as the actions taken by different stakeholders with divergent 
interests and unequal resources and power that characterize a given 
environment.28 The extensive lobbying efforts by large technology compa-
nies, for instance, to push for guardrails that are favorable to their businesses 
are well-known and have also become apparent in the AI context. Perhaps 
more than anything, geopolitical dynamics—both in terms of competition 
and cooperation—frame the broader normative picture in which AI gover-
nance activities unfold in each domain and region,29 and have led to what 
some have described as a “race to AI regulation” on top of the global race 
for AI.30 The AI policy of the European Union, for instance, was posi-
tioned from the outset against the backdrop of global developments,31 and 
its AI Act has already been analyzed through the prism of the so-called 
Brussels effect.32

These and several other factors—including culturally anchored values, 
preferences, and attitudes by people toward innovative technologies33—
influence the normative context in which present day AI governance 
efforts crystallize. In other words, emerging AI governance norms are 
not endogenous rules but are socially embedded. The AI policies of Nordic 
nations, for instance, distinctly rely on core cultural values as organizing 
principles to steer the development of AI in society.34 These normative dy-
namics complicate any comparison between different regimes and, above 
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all, limit the possibility of successfully transplanting legal and other AI 
norms from one context to another.

International Initiatives

The AI governance landscape at the national and regional level is also shaped 
by a series of important international developments and initiatives,35 includ-
ing the influential OECD Principles on Artificial Intelligence,36 which seek 
to promote AI that is innovative and trustworthy and that respects human 
rights and democratic values; the UNESCO Recommendations on the Eth-
ics of AI37 that spans standard-setting, policy advice, and capacity building; 
the UK-led Bletchley Declaration38 that concerns international coordination 
on frontier AI; the G7 Hiroshima AI Process that promotes guardrails for 
advanced AI systems at the global level, among several others, including ef-
forts such as the formation of a UN High-Level Advisory Body on AI and, 
more recently, the UN Resolution on Safe, Secure and Trustworthy Artifi-
cial Intelligence System.39

As this incomplete list already indicates, international efforts also range 
from relatively high-level aspirational principles to binding instruments. 
With respect to the latter, the most important initiative is the Council of 
Europe’s (CoE) Framework Convention on Artificial Intelligence Human 
Rights, Democracy, and the Rule of Law.40 The treaty covers the use of AI 
systems in both public and private sectors (with notable exceptions in ar-
eas such as national security), offering two compliance pathways when reg-
ulating the private sector: direct obligation to the treaty’s provisions or 
alternative measures while respecting international human rights, democ-
racy, and the rule of law. This accommodates global legal diversity. It man-
dates transparency, oversight, risk assessment, and mitigation measures, 
including identifying AI-generated content and assessing the need for mor-
atoriums or bans on high-risk AI uses.

The treaty ensures AI systems uphold equality, privacy rights, and 
accountability for adverse impacts, with legal remedies for human rights 
violations and procedural safeguards. It requires parties to adopt measures 
to ensure that AI systems do not undermine democratic institutions and 
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establishes a Conference of the Parties for follow-up, and it requires 
independent oversight to ensure compliance, raise awareness, and foster 
public debate on AI technology.41

Relevant building blocks of international AI governance that predate 
some of the most recent global AI initiatives can also be found in the do-
main of free trade and digital economy agreements. For instance, the Digi-
tal Economy Partnership Agreement between Singapore, Chile, and New 
Zealand, promoting interoperability among the different digital trade reg-
imens, promoted the adoption of ethical AI frameworks and developed 
mechanisms for cross-border data flows.42 The UK-New Zealand Free Trade 
Agreement, to take another example, removed certain data localization re-
quirements and established guardrails for international data flows between 
the two countries.43

Institutionalized initiatives also include regional and bilateral efforts.44 
Under the institutional umbrella of the US-EU Trade and Technology Coun-
cil (TCC), for instance, the United States and the European Union commit-
ted to a series of projects to advance trustworthy AI through collaborations 
in the area of measurement and evaluation, the design of AI tools to protect 
privacy, and the economic analysis of AI’s impact on workforce. An initial 
contribution is the TCC Joint Roadmap on Evaluation and Measurements 
Tools for Trustworthy AI and Risk Management, with commitments to 
work toward a common terminology (a draft of an EU-US Terminology and 
Taxonomy for Artificial Intelligence was recently released for consultation) 
and a common knowledge base of metrics and methodologies to coordinate 
their work with international standard bodies, and track emerging risks 
and work toward compatible evaluations of AI systems. Progress has also 
been made in the area of privacy and AI workforce impact analysis.

Cross-Pollination

Even below the threshold of larger institutionalized international efforts, 
and despite the previously mentioned idiosyncrasies that point toward nu-
anced AI governance arrangements across geographies and contexts, the 
process of developing such arrangements at the local and national levels is 
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currently characterized by a remarkable degree of cross-pollination among 
policymakers and lawmakers.45 Put differently, not only do geopolitical dy-
namics shape the normative field of AI governance, but the approaches and 
instruments that are deployed within the respective spheres of polycentric 
governance-making are themselves shaped by interactions among relevant 
stakeholders, elevating the complexity of the norm dynamics at play.

Forums and venues where such processes take place range from infor-
mal Zoom calls, conferences, and workshops to engagement in committees 
and networks, such as the Global Partnership on AI Governance or the G20 
Working Group on Artificial Intelligence, to name just a few examples spe-
cific to the domain of AI. Platforms such as Globalpolicy.AI, the Transat-
lantic Policy Network, and the World Economic Forum, or collaborations 
between think tanks such as the Brookings Institution and the Center for 
European Policy Studies, also serve as important spaces for cross-pollination 
among various stakeholders, including policymakers and lawmakers, in ad-
dition to direct lines of communication among them. (Members of the US 
Congress, for instance, have engaged with one of the rapporteurs of the EU 
AI Act.) Efforts facilitated by academic institutions, such as the Stanford 
Institute for Human-Centered AI, also serve as exchange points for decision-
makers in the field of AI.

Cross-pollination through knowledge diffusion in the field of AI gov-
ernance takes place though various other mechanisms with varying degrees 
of informality and transparency. Examples include structured interac-
tions in the context of standards-setting organizations involved in AI 
governance—the collaboration between the OECD and NIST to develop a 
catalog of AI tools and metrics is a case in point—but also lobbying efforts 
by industry and industry associations that often operate across jurisdictions 
and promote certain approaches or instruments across different forums of 
AI governance-making.

Toward Governance Innovation?

Each cycle of technological innovation with the potential to induce struc-
tural shifts in a socioeconomic environment when interacting with humans 
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and society typically challenges existing governance structures. While the 
default response to such challenges is to apply the old structures to the new 
phenomenon, the disruptions also offer a window of opportunity for inno-
vation within governance systems. Some of these governance innovations 
are gradual in nature and others more radical; some include novel institu-
tions, and others innovate around processes or rights.46 The internet revo-
lution, for instance, led to several governance innovations across all three 
domains, with ICANN being an example of an institutional innovation, on-
line dispute resolution systems a process innovation, and the right to be 
forgotten a rights innovation.47

While traces of innovative governance might be spotted at the levels of 
individual norms within large governance projects such as the EU AI Act, 
it is the calls for new AI oversight institutions voiced by government repre-
sentatives, industry leaders, and academics that have recently garnered 
public attention. The new models proposed for AI governance often find 
inspiration in other policy domains, including climate, finance, or nuclear 
energy. A recent review of proposals for new AI institutions clustered them 
into seven functional categories that transcend traditional government pol-
icies. Models range from scientific and political consensus-building to co-
ordinating institutions in the realm of policy and regulation, and from 
enforcement of standards and restrictions to international joint research 
and distribution of benefits and access to AI technology.48

The analysis suggests a wide array of models and experiences that can 
be leveraged as the quest for global AI governance intensifies. In the cur-
rent quicksilver environment, it is arguably one of the most intriguing and 
consequential questions how much innovation in governance is needed and 
(politically) possible to unlock the benefits of AI while managing its risk at 
the global level, and what would such an arrangement look like in 
practice.49

Approaches to AI Governance

When returning to present day approaches to AI governance, the complexity 
and heterogeneity of the evolving AI governance landscape, the contextually 
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embedded nature of the respective normative arrangements, and the speed 
of development make it difficult to meaningfully engage in a comparative 
norm-level analysis between and among different initiatives across various 
levels of governance. What this section offers, instead, are a number of 
analytical lenses that can be used to help understand and position differ
ent governance approaches relative to each other, highlighting the broad 
range of conceptual and functional pathways available.

Positioning Approaches

With these caveats in mind, one might take a closer look at the diverse 
AI governance arrangements that together form the normative field. Given 
the number of initiatives and the fluid state of norm development around 
the world, it is virtually impossible within the scope and purpose of this 
article to offer even a representative, let alone a comprehensive overview of 
current attempts aimed at governing AI. A more modest approach is to 
position some of the most salient governance initiatives along several spec-
trums with ideal-type approaches at their respective ends:

•	 	Sectoral versus horizontal approaches: AI-based technologies cover 
various application contexts. Governance approaches can seek to 
regulate AI horizontally across their different use cases or regu-
late the development, deployment, and use for specific sectors, 
such as health, transportation, justice, or education, to name just 
a few. The United Kingdom takes a sectoral approach; other 
country examples include Japan and Switzerland. At least tradi-
tionally, the United States has also pursued a sectoral approach, 
with the recent Executive Order blurring the lines to the extent it 
pursues a whole-of-government approach. The EU, with its EU 
AI Act and related efforts like the AI Liability Directive, takes a 
decidedly horizontal approach to AI governance, supplemented 
by sector-specific regulations, resulting in a mixed approach, 
but partly also interacting with other legislation, including the 
GDPR but also the Digital Services Act (DSA)—the latter in which 
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foundation models are incorporated in very large online platforms 
and search engines.50

•	 	Soft law versus hard law: Another positioning point is the question 
whether a given AI governance approach relies more on soft law 
or hard law. Soft law instruments include standards, ethics guide-
lines, checklists, best practices, to name a few. They play a key role 
in self-regulatory regimes, but in the field of AI, they also supple-
ment state-driven legislation and regulation. Japan and Singapore 
currently rely heavily on soft law instruments, which continue to 
play a prominent role in the United States, for instance, in the ge-
stalt of the Voluntary Commitments51 from leading companies to 
manage the risks posed by AI, but also the NIST AI Risk Manage-
ment Framework,52 among others. Ambitious hard law approaches 
are currently pursued in the European Union, Canada, and Bra-
zil, but also part of the AI governance mix in the United Kingdom 
(sectoral regulation) and the United States (particularly state and 
local levels), as already mentioned.

The spectrums outlined here interact with each other and partially over-
lap. As already indicated, AI governance initiatives often combine differ
ent approaches and instruments within them. For instance, hard law 
approaches to AI governance will typically also rely on standard-setting 
outside the formal lawmaking processes, as subsequently discussed. While 
not being exclusive and clear-cut, the spectrums might still serve as a rough 
coordination system to identify the position of different approaches rela-
tive to each other.

Cutting across the sectoral versus horizontal and soft versus hard law 
approaches are two other spectrums that can be helpful when considering 
the available toolbox of AI governance and comparing different strategic 
choices made by AI governance bodies:

•		Outcomes versus procedural approaches: Outcome-based ap-
proaches to AI governance stipulate a desirable outcome such as 
innovation, economic growth, or safety, to name just a few objec-
tives, and keep the means to achieve these objectives typically 
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flexible. Procedural approaches, in contrast, prescribe instruments 
that need to be adopted along the way, assuming that they will lead 
to a desirable outcome. Risk management is a case in point. Risk-
based approaches categorize AI applications based on their level 
of risk to individuals and society and attach tailored requirements 
to each level. Perhaps the most prominent example in the latter cat-
egory is the EU AI Act, with its intricate scheme of risk classifica-
tion and corresponding legal obligations. The Canadian draft 
legislation also builds upon a risk-based approach, as well as 
the Brazilian Draft AI Law, which the EU AI Act inspired. Ex-
amples of the former approach include the United Kingdom’s 
pro-innovation approach to AI governance, which targets the out-
comes AI will likely generate in specific applications rather than 
assigning rules according to risk levels.

•		Principles versus rules-based approaches: As the name suggests, 
principle-based approaches seek to guide the development, deploy-
ment, and use of AI by laying down a set of overarching principles 
that guide the relevant stakeholders. Prominent examples of such 
an approach are the OECD AI Principles and the G7 International 
Guiding Principles on AI. Rules-based approaches, in contrast, 
typically lay out specific and more detailed rules according to 
which the relevant stakeholders must play. At the country level, 
China’s Interim Measures in the realm of generative AI are illus-
trative. But also sector-specific requirements, for instance, in the 
area of medical AI or transportation, might often be rule-based, 
suggesting again that approaches might be mixed and are often not 
clear-cut.

Across these four spectrums (and others could be added), it is important to 
remember that any categorization of this sort runs the risk of oversimplifi-
cation and is of limited value given the characteristics of AI as a “messy” 
normative field as discussed in the earlier section. At the very least, how-
ever, they might illustrate the range of approaches available and serve as a 
rough navigation aid when contrasting different choices made by various 
AI governance actors.
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Functional Dimensions

Another lens for positioning approaches to AI governance—and within 
such approaches, individual norms—is functional in nature. Borrowing 
from analyses of previous cycles of technological innovation and accom-
panying governance responses in law and regulation, one can distinguish 
between constraining, enabling, and leveling functions of norms.53

Lawmakers or regulators might draft and enact norms that constrain the 
development or use of certain types of technologies or functionalities. Fre-
quently used instruments include the following:

•	 	Prohibitions: Legislation or regulation can ban the development or 
use of certain AI systems or applications. The EU AI Act, for in-
stance, prohibits certain AI use cases that pose unacceptable risks. 
Its far-reaching restrictions on using facial recognition technology 
are another case in point. Similarly, several US municipalities have 
restricted or banned the use of facial recognition technology by lo-
cal agencies. Restrictions on the export of dual-use technologies are 
another illustration. More generally, the Canadian AIDA proposes 
new criminal law provisions to prohibit any reckless and malicious 
uses of AI that cause serious harm to Canadians and their interests.

•		Premarket obligations: AI laws and regulations can stipulate re-
quirements that need to be met before an AI product enters the 
market. The EU AI Act requires developers of high-risk AI systems 
to perform comprehensive conformity assessments before placing 
them on the market. In areas such as medical AI or autonomous 
vehicles premarket approval is often required, including under US 
regulations. Post-market monitoring is another instrument in the 
toolbox, often supplementing premarket regulatory schemes, like 
in the case of high-risk systems under the EU AI Act.

•	 	Certification and registration: Analytically distinct, but closely re-
lated to premarket requirements are certification and registration 
schemes. The important role of (at least) voluntary certifications 
is mentioned in the in the Canadian Artificial Intelligence and 
Data Act (AIDA), for example. High-Risk AI systems under the 
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proposed EU AI Act are subject to a strict certification regime. In 
addition, such systems, as well as foundational models, need to be 
registered in an EU database.

Enabling norms, in contrast, are designed to permit or even promote the 
development and use of technology. Such norms—most prominently so-
called safe harbors—have played an important role in creating a flourishing 
digital platform economy, as mentioned before. In the AI realm, laws and 
regulations can promote the development and use of AI systems in various 
ways, ranging from compliance exceptions for certain use cases to govern-
ment investments. Some of the common instruments include the following:

•	 	Funding and subsides: Enabling AI legislation can establish fund-
ing schemes to support the development or adoption of AI-based 
technologies. Lawmakers across countries and regions, including 
the United States and Europe, have enacted laws as a foundation to 
direct investment and subsidies toward industry as well as the 
public sector. The US Executive Order, for instance, directs federal 
funding toward a research coordination network to support pri-
vacy preserving technologies, among several other actions.

•	 	Capacity building: AI legislation might stipulate capacity building 
measures. Instruments may range from technical assistance 
programs to setting up resource and innovation centers. The US 
Executive Order, for instance, provides small developers and 
entrepreneurs with access to technical assistance and resources. 
The envisioned AI and Data commissioner under the Canadian 
AIDA is also engaged in capacity building.

•	Sandboxes: Various AI laws encourage or even mandate regula-
tory sandboxes, which allow businesses and regulators to cooper-
ate in a controlled environment to test innovative products or 
services and gain insights with regard to risks of these innovation 
and appropriate safeguards. Sandboxes are a key measure in sup-
port of innovation under the EU AI Act, for instance. The Brazil-
ian AI Act set the foundation for testing environments to support 
the development of innovative AI systems.
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Norms that are leveling the playing field include, for instance, general rules 
prohibiting anti-competitive behavior or deceptive business practices. Spe-
cific instruments that seek to address information asymmetries or other 
imbalances in the AI context include the following:

•		Transparency: To bridge information gaps, AI laws and regula-
tions often impose disclosure obligations, which come in many 
forms and shapes. The EU AI Act, for instance, requires clear and 
comprehensible information about the capabilities and limitations 
of high-risk AI systems, and transparent and traceable decision-
making processes. The Brazilian AI Act, to take another example, 
mandates transparency in the use of AI systems in interactions 
with natural persons, among other requirements.

•		Education and training: AI literacy and skill-building programs 
might also have their anchor in laws and regulations. The US Ex-
ecutive Order, for instance, supports various programs to enhance 
AI-relevant skills to ensure access to AI opportunities for the work-
force in general, and for specialized groups of professionals, such 
as investigators or prosecutors.

To be sure, this list of instruments is not exhaustive; additional mechanisms 
currently under consideration cover a broad spectrum of governance tech-
niques, including licensing requirements,54 tax obligations, rulemaking au-
thority, and procurement power, among others. Furthermore, several 
additional instruments transcend the three categories of constraining, en-
abling, and leveling norms. For instance, auditing and inspection regimes, 
oversight mechanisms, or sanctions are frequently used techniques to cre-
ate accountability and ensure compliance and thus serve a cross-cutting 
function.

Mixed Approaches

Clearly, the evolving normative field of AI governance is complex and the 
traditional taxonomies start to blur. Particularly at the country level, AI 
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governance often involves mixed approaches, combining different strate-
gies and instruments and situating these countries somewhere along the 
spectrum of the ideal-type approaches outlined earlier. Moreover, al-
though the dimensions that mark each spectrum might be analytically 
distinct, they are also interacting. The EU approach to AI governance is a 
helpful illustration in this regard: The EU AI Act advances a risk-based 
approach through hard law but is supplemented by sectoral regulations in 
areas such as health and transportation as well as soft law instruments 
such as technical standards and ethical principles. As already indicated, 
the coordination system is perhaps most helpful to understand the relative 
positioning between different approaches and to create awareness of the 
available options, particularly for countries and communities that remain 
undecided on which approach to pursue.

The same applies to the functional categories. AI governance, like pre-
vious tech-induced governance regimes, typically consists of a complex 
amalgam of norms. Such arrangements typically combine several of the 
functions briefly described earlier, as a recent empirical study of several 
hundred of proposed (and at times enacted) AI laws and regulations across 
the Atlantic indicates.55 Nonetheless, certain trends become visible when 
applying a functional lens. Mapping proposed, rejected, and enacted legis-
lation on AI-based technologies in the United States and Europe over the 
past seven years, the study reveals that legislative activities on both sides of 
the Atlantic serve different functions, but (proposed) laws and regulations 
in the United States tend to be more strongly in the enabling zone than their 
European counterparts.

Effectiveness and Ripple Effects

Mapping existing approaches to AI governance in general, and a high-level 
overview of some of the most salient instruments that are available to law-
makers and regulators in particular, indicates a deep reservoir of normative 
techniques (both social and technological in nature) that AI governing bod-
ies can tap into when seeking to steer the development, deployment, and 
use of AI across diverse application areas. While the choices among 
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approaches and instruments are not unconstrained and, as discussed in 
the subsection “Contextualizing AI Governance”, shaped by numerous 
factors that create path-dependencies, the respective actors involved often 
have significant leeway when selecting and mixing the tools to address 
specific AI governance issues.

AI governance shares characteristics of a wicked policy problem with 
many interdependencies and contingencies, making it virtually impossible 
to predict in all nuances the individual and aggregated effects when choos-
ing one governance approach over another, or when selecting certain in-
struments while not deploying others.56 Experiences from previous cycles 
of technology innovation offer some high-level insights for the design of 
“good governance” and clues about possible ramifications of different ap-
proaches at a basic level.57 For instance, comparisons between US and 
European approaches to privacy and data protection, or an analysis of 
different governance regimes across regions when regulating online in-
termediaries such as social media platforms, might teach some lessons.58 
However, at the more granular level of specific instruments, lawmakers 
and regulators often fly in the dark, as links between interventions and 
desirable outcomes (for instance, in terms of effectiveness, efficiency, and 
flexibility when addressing a given AI issue) remain chronically uncer-
tain when dealing with structural sociotechnological transitions.59

In the normative field of AI governance, as in other domains, a com-
plex web of economic, social, technological, organizational, and also human 
factors influences the practical outcomes emerging from any given mix of 
governance approaches and instruments over time. Constraining norms as 
a subset of AI governance arrangements and the question of pressures and 
incentives that might affect compliance and enforceability are indicative of 
some of the complicating dynamics. Research on the effects of different ap-
proaches to privacy and (pre-GDPR) data protection in the United States 
and European countries, for instance, revealed that on-the-ground 
practices—including overall awareness, leadership buy-in, and professional 
culture—have been critical factors determining privacy outcomes regard-
less of the underlying conceptual choices made by lawmakers and regula-
tors.60 Another example is a finding from a recent in-depth examination of 
China’s hard law approach to AI governance concerning generative AI, 
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suggesting a significant gap between the “law on the books” and “law in 
action” when it comes to the willingness to enforce the strict rules amid 
the geopolitical arms race and vis-à-vis domestic economic struggles.61 
At a more abstract level, both stories—albeit for different reasons—point 
toward the importance of communities of practice and implementation 
capacities, respectively, that in no small part will co-determine the effec-
tiveness of any of the available approaches to AI governance.

The uncertainties and dynamics involved when dealing with emerg-
ing science and technology such as AI make it not only challenging to 
select and combine approaches in ways that best address a given gover-
nance issue but also very difficult to anticipate second order and ripple ef-
fects. Governance instruments that promote the use of AI in the public 
administration, for instance, might exacerbate environmental issues or 
have implications for AI supply chains. AI guardrails that do not stand the 
test of time might affect public trust not only in the technology but also in 
the state. For all these reasons, it is vital to incorporate performance 
benchmarks and evaluation processes as well as mechanisms of responsible 
experimentation and systematic learning into AI governance arrange-
ments, whether based on soft or hard law or on a sectoral or horizontal 
approach.62

Mapping Normative Patterns

Analyzing contemporary AI governance arrangements as building blocks 
of emerging governance regimes is a difficult task, as the caveats in the pre-
vious sections already indicate. AI governance as a normative field, as 
mentioned before, is not yet defined by clear boundaries; rather it is a mov-
ing target where general background rules and specific norms enacted by a 
broad range of governance actors interact. Given the polycentric character 
of current AI governance arrangements, various norm types are involved, 
with varying degrees of abstraction, levels of legitimacy, and prescriptive 
power. Finally, AI governance norms emerge within specific institutional, 
legal, and cultural contexts, but they also interact with each other as dis-
cussed earlier, making comparisons among them challenging.
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One promising methodological approach to deal with this complexity 
and heterogeneity is to look out for normative patterns instead of compar-
ing individual norms. The approach, which is inspired by the theory of law 
as normative patterns in a normative field as developed by the late Swedish 
legal theorist Anna Christensen (who in turn got inspiration from Doug-
las Hofstadter’s analysis of AI programs), is based on the empirical obser-
vation that different basic normative patterns can be distinguished both 
within and across a multitude of norms that seek to collectively regulate so-
cial matters.63

Applying this idea of normative pattern analysis to the normative field 
of AI governance, several patterns emerge when looking within and across 
the EU AI Act and US Executive Order in particular, but also when con-
sidering selected other laws such as the Brazilian and Canadian AI bills, as 
well as soft laws and international governance initiatives.64

Protection of Established Rights

Various legal norms in evolving AI governing arrangements seek to ensure 
and bolster the protection of established rights of rightsholders vis-à-vis 
novel risks and potential harms associated with the development and use 
of AI. Together, this cluster of norms forms one of the key patterns that tran-
scend the heterogeneous set of norms of AI governance. Within the EU AI 
Act, for instance, the protection of established rights plays an important role 
and goes to the heart of the raison d’être of the legislation, which is set out 
to ensure a high level of protection of health, safety, fundamental rights, 
democracy, the rule of law, and the environment from harmful effects of 
AI systems. Similarly, several sections of the US Executive Order aim to 
protect established rights, for instance, when stipulating requirements 
against unlawful discrimination, protection against fraud, and threats to 
privacy, or to ensure the safety, security, and reliability of AI systems. Bra-
zil’s proposed AI legislation, for example, included a section on the protec-
tion of the rights of individuals impacted by AI decision-making and 
outlined individual and collective rights of action. Rights protection is 
also a core motif of soft law instruments advanced globally. Consider, for 
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example, Singapore’s Model AI Governance Framework, which includes 
the protection of the interests of human beings, including their well-being 
and safety, as primary considerations in the design, development, and de-
ployment of AI. Also, in the international realm, various AI governance 
initiatives include explicit or implicit references to protecting established 
rights. The G7 Hiroshima Process International Code of Conduct for 
Organizations Developing Advanced AI Systems with its requirement to re
spect human rights and protect children and vulnerable groups, or the 
Bletchley Declaration with its recognition that the protection of human 
rights, safety, privacy, and data protection needs to be addressed, or the 
CoE’s Framework Convention with its rules to align the life cycle of AI 
systems with international and national legal protections of human rights, 
are examples of pars pro toto.

Protection of Established Positions

A second, related pattern that crystallizes across a diverse set of AI gover-
nance arrangements at the national and international levels is the protec-
tion of established positions, where some of the legal norms aimed at 
governing AI are crafted in ways that are protective of previously recognized 
economic, cultural, and social interests and aimed at preserving a given sta-
tus quo. The EU AI Act includes various normative references along these 
lines. At the systemic and most fundamental level, measures taken to shield 
democracy and justice, for instance by limiting certain uses of AI or im-
posing strict upfront requirements, are examples of the protection of estab-
lished positions. Regarding the protection of individual interests, the EU 
AI Act clarifies that it does not alter any of the previous rules, particularly 
in the realm of data protection, consumer protection, and product safety, 
which establish important baselines in terms of protected interests and 
positions. In other cases, it seeks to reaffirm established interests, for in-
stance, with respect to copyright holders’ economic interests in the context 
of the regulation of foundation models used in generative AI systems, where 
providers would be required to publicly disclose a sufficiently detailed 
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summary of the copyrighted material used as training data. In the same 
way, the Brazilian AI Law reinforces previous regulations, especially those 
related to data and consumer protection. Concerning intellectual prop-
erty, it establishes that it is without prejudice to the owners of these rights. 
US Executive Order also includes norms aimed at protecting established 
positions, for instance, in the form of requirements aimed at improving the 
security, resilience, and incident response related to AI usage in critical 
infrastructure or when outlining different measures and programs in 
support of workers who might face future AI-related job disruptions, in-
cluding the protection of their economic interests and well-being. Pro-
tecting established positions is also a key driver behind international AI 
governance initiatives. The Bletchley Declaration, to take just one example, 
with its focus on measures to ensure the safety of AI systems, for instance, 
in the context of frontier AI capabilities, is motivated to safeguard pro-
tected interests and existing positions of individuals, organizations, and 
governments.

Market Functional Pattern

The market functional pattern is a dynamic element in AI governance ar-
rangements. Norms at the core of this pattern aim to promote new economic 
activities, stimulate technological development through market mecha-
nisms, and support new markets and business models. Improving the 
smooth functioning of the internal market while promoting the uptake of 
human-centric and trustworthy AI and ensuring high levels of protection 
is among the overarching objectives of the EU AI Act. It enables AI systems, 
with notable exceptions, to benefit from the principle of free movement of 
goods and services. References to market functioning are spread across the 
proposed law and mentioned in the context of open software and data as 
enablers of market-based research and innovation. Transparency require-
ments are also contextualized as minimally invasive measures to avoid un-
justifiable restrictions on trade. More generally, the EU AI Act is embedded 
in a broader digital strategy aimed at enhancing Europe’s competitiveness 
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and promoting innovation in the digital market. On the other side of the 
Atlantic, the US Executive Order also states as a core principle the promo-
tion of responsible innovation and competition and stresses the importance 
of a fair, open, and competitive ecosystem and marketplace for AI and 
related technologies. Its requirements to promote innovation and compe-
tition, but also to nurture AI talent and strengthen US leadership inter-
nationally are, to a large extent, part of a market functional pattern. At 
least traces of the same pattern can also be found in soft law instruments. 
The Singaporean Model AI Framework,65 for instance, contextualizes its 
best practices in terms of AI as an enabler of new goods and services and a 
booster of productivity and competitiveness, which can lead to economic 
growth and better quality of life. At the international level, the market func-
tional pattern has been less explicit in recent AI governance initiatives, 
with occasional references to productivity gains and inclusive economic 
growth, for instance, in the Bletchley Declaration. Market functional ra-
tionales also pop up in various AI-related efforts, such as in the realm of 
data governance aimed at enabling trans-border flows of data, building 
upon the international order of IP and trade as the normative bedrock of 
globalized markets.

Fostering Innovation

As already mentioned in the context of the functional dimensions of AI gov-
ernance, several AI governance arrangements contain dedicated norms to 
promote research and development of AI-based technologies. Expanding 
on the original concept of normative pattern analysis pioneered by Anna 
Christensen, this complex of norms can be conceptualized as the fostering 
of innovation pattern. It interacts with the market functional pattern and 
is often framed as the protection of the potential for innovation based on 
preexisting commitments to free trade and intellectual property. Again, this 
normative pattern is typically present in national-level AI governance ar-
rangements and in international initiatives and cuts across the hard law and 
soft law distinction. The provisions of the EU AI Act mention innovation 
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close to thirty times. It stipulates various norms aimed at promoting inno-
vation or protecting the potential for innovation, ranging from the possi-
bility of regulatory sandboxes and coordinated standard-setting in the 
technical realm to AI literacy initiatives, among others. Likewise, the pro-
posed Brazilian legislation also adopts regulatory sandboxes to promote in-
novation. Norms aimed at promoting AI innovation are also integral to 
the UK White Paper, which proportionately tailors its regulatory framework 
to fulfill the goal of innovation promotion,66 and to the US Executive 
Order, which outlines a broad range of measures to promote innovation 
and competition through immigration reform, investments in resources, 
support for research and development, and measures in the realm of 
IP protection, spanning various governmental agencies and bolstering 
private-public partnerships. Soft law instruments of AI governance often 
also include recommendations aimed at promoting innovation, both at the 
national and international levels. The influential OECD AI Principles, for 
example, call on governments to consider long-term public investments and 
encourage private investments in research and development to spur inno-
vation in trustworthy AI, including in creating open datasets to support the 
overall environment for responsible AI research. Along similar lines, at the 
global level, the UNESCO Recommendation on the Ethics of AI calls upon 
member states to ensure that public funds are dedicated to responsible and 
inclusive AI research and that governments promote international collab-
oration to advance innovation.

The patterns proposed in this chapter, inspired by Christensen’s origi-
nal work, are an attempt at describing some of the core normative elements 
within and across different AI governance arrangements. Given the com-
plexity and heterogeneity of AI governance arrangement, these different 
patterns do not make up a hierarchy of norms; rather they coexist and 
interact with each other in ways shaped by various contextual factors, in-
cluding cultural, political, and economic conditions as alluded to in the 
previous section when contextualizing AI governance. Although the mode 
of analysis is descriptive rather than prescriptive, the approach can serve 
as a foundation to study how patterns manifest themselves over time within 
and across different societal conditions and application contexts.
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Selected Nodes of AI Governance

The previous sections sketched some of the approaches, functions, and pat-
terns of AI governance as a moving normative field, highlighting by example 
the great variety of pathways available when seeking to regulate the develop-
ment, deployment, and use of AI. Building on this mapping exercise, this 
section looks at cross-cutting crystallization points in some of the AI gover-
nance arrangements featured in this article and intends to highlight both 
zones of convergence and divergence in the normative field. Again, several 
AI governance initiatives at the national and international levels are refer-
enced to illustrate some of the commonalities and differences among them 
at the conceptual level. Last, the section suggests and identifies early traces 
of an interoperability approach as a potential way forward to navigate both 
zones of convergence and divergence across AI governance arrangements.

Zones of Convergence

While much nuance remains, some trends of convergence can be observed 
across most of the AI governance arrangements reviewed in this chapter. 
For the methodological reasons mentioned before, the following com-
monalities focus on conceptual “nodes” of AI governance rather than on 
individual norm-level comparisons.

•	 	Prominence of risk-based approaches: While some AI governance 
actors opt for outcome-based approaches, risk-based approaches 
to AI governance have gained popularity at both the national and 
international levels, cutting across sectoral and horizontal as well 
as soft and hard law instruments. Leading examples at the national 
level include the EU AI Act, Canadian AI and Data Act, and Bra-
zilian AI bill, which all use some forms of risk and impact assess-
ment to group AI systems into different categories of compliance 
obligations. The US Executive Order also highlights the impor-
tance of a risk-based approach, particularly when managing risks 
from the federal government’s own use of AI and in the context of 
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implementation measures, for instance, in the gestalt of the NIST 
AI Risk Management Framework as an influential voluntary stan-
dard. Other soft law instruments, such as the Singaporean Model 
AI Governance Framework, provide guidance to organizations to 
adopt a risk-based approach when implementing measures. At the 
international level, risk-based approaches have been promoted by 
G7 digital and technology ministers and referenced in the Hiro-
shima Process International Code of Conduct for Organizations 
Developing Advanced AI Systems.67 Although these examples sug-
gest conceptual convergence toward risk-based approaches, sub-
stantial differences continue to exist at the operational level.68

•		Role of regulatory sandboxes: Building on previous experiences 
using sandboxes as a supervised experimental space to enable re-
sponsible testing of emerging technologies and foster bidirectional 
learning between developers and regulators, AI governance bod-
ies across the globe have started to embrace this technique and are 
currently applying it to AI. The European Union in the EU AI Act 
and several European member states, including Spain and Ger-
many, are promoting the use of AI regulatory sandboxes as con-
trolled environments with reduced regulatory burden to keep pace 
with rapid AI development while gaining experience dealing with 
it effectively. The Brazilian AI Act also authorizes the operation of 
an experimental regulatory environment for innovation in AI, and 
the preparation for a first sandbox is already underway. Singapore, 
as a last example, recently launched a Generative AI Evaluation 
Sandbox as an experimental platform for developers to build re-
sponsible AI use cases and enable the evaluation of trusted AI 
products.69

•	 	Importance of standards: Across all the reviewed AI governance ar-
rangements, regardless of their respective positioning, standards 
play a vital role.70 Even in cases where comprehensive legislation 
is at the core of AI governance, like in Europe with the EU AI Act, 
standard-setting is a critical part of the strategy. The European 
Committee for Standardization (CEN) and the European Commit-
tee for Electrotechnical Standardization (CENELEC) are leading 
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organizations developing standards that could provide developers 
the presumption of conformity with the EU AI Act. As already 
mentioned, NIST in the United States has been actively involved 
in developing standards for AI by creating a framework that fos-
ters the development of trustworthy and responsible AI systems, 
covering areas such as bias, explainability, and robustness. The 
International Organization for Standardization (ISO) and the 
International Electrotechnical Commission (IEC) have a joint 
technical committee focused on AI standardization, and inter-
national organizations like the Institute of Electrical and Elec-
tronics Engineers (IEEE) have set up various working groups 
developing standards for ethical considerations in AI, to name just 
a few initiatives among many.

Zones of Divergence

The complexity and heterogeneity of the AI governance landscape make it 
unsurprising that many differences exist not only at the level of individual 
norms—for instance, whether a given AI governance arrangement specifi-
cally addresses foundation models, and if so, how—but also at the concep-
tual level. In addition to the higher-level differences resulting from distinct 
approaches to AI governance already mentioned earlier in “Approaches to 
AI Governance,” some of the particularly noteworthy conceptual areas of 
divergence include the following:

•		Scope and definitions: Many important nuances exist regarding 
the scope of application among the variety of different governance 
initiatives, as well as with respect to definitions of various techni-
cal and legal terms. Voluntary industry standards and professional 
best practices, for instance, have a very different scope and reach 
than mandatory laws and regulations, whether horizontal by de-
sign or sector-specific. The EU AI Act, for instance, seeks to regu-
late the full range of AI applications across the private and public 
sectors, whereas the aforementioned US Algorithmic Accountability 
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Act appears to be more specific and selective. The US Executive 
Order, in contrast, takes a broad whole-of-government approach 
to AI governance. While progress has been made when it comes 
to developing a shared understanding of key terms such as AI it-
self at the international level—strongly influenced by the impor
tant work of the OECD, which recently updated the definition of 
AI—many other important definitions of key concepts are a 
work-in-progress or remain contested, as recent debates about the 
definition of all-purpose AI, generative AI, and foundation models 
in the EU AI Act illustrate. To be sure, differences in terminology 
are neither a new phenomenon nor unique to AI governance. How-
ever, in light of the heterogeneous norms landscape, it remains a 
significant challenge for the years to come to create appropriate 
levels of (semantic) interoperability across a thickening web of 
emerging laws, standards, and best practices that might apply si
multaneously given the polycentric nature of AI governance.

•		Level of normative commitment: Despite the flourishing of AI 
governance initiatives in general and recent momentum around 
the creation of hard laws after a phase with a strong emphasis on 
ethical norms, stark differences remain among such efforts when 
it comes to the level of the underlying normative commitment. Per-
haps most significantly and visibly, the commitment to individual 
rights varies greatly across AI governance arrangements. This ap-
plies not only when comparing AI norms of environments gov-
erned by the rule of law versus others but also when considering 
the depth of normative guarantees offered by different democratic 
regimes. For instance, while the US Executive Order marks with-
out any doubt an important step forward when it comes to the pro-
tection of civil rights and privacy against emerging AI risks, it 
does not immediately offer the same level of actionable legal pro-
tection for individuals as the provisions set forth in the EU AI Act 
and the General Data Protection Regulation, respectively. Simi-
larly, most, if not all, the AI governance requirements stipulated 
in soft laws such as Singapore’s AI Model AI Governance Frame-
work as well as many of the global AI governance initiatives, are 
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important signals and milestones on a longer trajectory but still 
are relatively weak normative commitments when assessed from 
the vantage point of advancing individual rights beyond the cur-
rent baseline of human rights protections.

•		Enforcement: The AI governance arrangements reviewed in the 
context of this chapter (and beyond) vary greatly in terms of en-
forcement regimes. As a threshold, much depends initially on the 
specifics of the governance approach itself, for instance, the role 
of voluntary self-regulation versus government-based regulation 
through hard law. Consistent with the polycentric characteristics 
of the AI governance landscape, different norms are typically 
enforced by different actors, ranging from in-house AI account-
ability boards or professional associations to traditional law en-
forcement or from newly created AI authorities to preexisting 
specialized agencies tasked with AI norm enforcement in their re-
spective sectors or industries. How an AI enforcement regime 
looks is yet again shaped by broader contextual factors, including 
preexisting legal order and market structure. For instance, the EU 
AI Act puts the primary enforcement responsibility in the hands 
of the member states, with consultation and coordination mecha-
nisms at the EU level in the form of a European Artificial Intelli-
gence Board chaired by the EU Commission. At least from a 
structural perspective, the EU approach to enforcement resembles 
regimes of harmonized data protection law, including strong en-
forcement tools. Adopting the same strategy, the Brazilian AI Law 
establishes a new supervisory authority that will be responsible for 
monitoring noncompliance with the law, promoting its implemen-
tation, and issuing other regulations related to AI. In the United 
States, the Federal Trade Commission (FTC)—in addition to the 
agencies now tasked with the implementation of the US Executive 
Order—is expected to play a particularly important role as an en-
forcer of consumer protection–oriented AI norms and standards 
at the federal level (complemented by specialized agencies such as 
the FDA in health AI), but without a comprehensive mandate com-
pared to the EU counterparts.
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Zones of Interoperability

The concept of interoperability offers an alternative analytical view on the 
diverse landscape of emerging AI governance arrangements—a perspective 
that transcends the binary division between zones of convergence and di-
vergence. Originally a technical concept, interoperability in the digital realm 
can be broadly understood as the ability of different systems, applications, 
or components to work together based on the exchange of useful data and 
other information.71 Under the header of “legal interop,” it has been analo-
gized to conceptualize the working together among distinct legal norms 
across jurisdiction that regulate the global flow of information.72 A num-
ber of instruments are available to enhance legal interoperability, includ-
ing legal harmonization, mutual recognition, reciprocity, cooperation, and 
standardization—approaches that can be operationalized through various 
means, ranging from treaty law to self-regulation.73 Some of these tools 
might also be relevant when seeking to enhance interop between AI gover-
nance arrangements or their components.

•	 	Many of the international initiatives led by state and nonstate 
actors mentioned earlier in this chapter are often aimed at en-
hancing the interoperability of norms, rules, standards, and 
decision-making procedures across different AI governance ar-
rangements. The OECD Principles on Artificial Intelligence or 
the UNESCO Recommendations on the Ethics of AI, for instance, 
have informed and often shaped hard law and soft law approaches 
across various jurisdictions, promoting interoperability at the 
norm and process levels and beyond. The G7 Hiroshima Process 
also aims to establish common guiding principles for organizations 
developing advanced AI systems while acknowledging that “dif
ferent jurisdictions may take their own unique approaches to im-
plementing these guiding principles in different way.”74 More 
recent efforts such as the United Nations Resolution encourage “in-
ternationally interoperable identification, classification, evalua-
tion, testing, prevention and mitigation of vulnerabilities and 
risks” of AI systems.75
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•	 	Higher levels of interop, however, might not only come from top-
down efforts. Multistakeholder initiatives can also enable the work-
ing together among different arrangements and regimes.76 In the 
field of AI governance, such efforts are still in the early stages, but 
important work is well underway.77 The Global Partnership on 
Artificial Intelligence, for instance, has produced various guides 
on the responsible development, use, and adoption of AI.78 The 
Partnership on AI, too, has advanced best practices in various 
areas of AI governance, including synthetic media.79 The AI 
Governance Alliance, convened by the World Economic Forum, 
produced interoperable building blocks to guide the safe develop-
ment, deployment and use of generative AI across AI governance 
arrangements.80 ETH Zurich in collaboration with the Swiss gov-
ernment hosts a multistakeholder Gen AI Redteaming network to 
collaborate on disclosing, replicating, and mitigating safety issues 
and develop best practices.81

As discussed, emerging AI governance arrangements introduce and le-
gitimize a variety of innovative approaches, tools, and practices—ranging 
from human rights and risk assessments to codes of practices—that will 
need to be further specified and operationalized in different forums and 
processes. From an interop perspective, this modularization of AI gover-
nance opens the possibility for cross-border multistakeholder cooperation, 
with the promise to enhance alignment between different AI governance 
arrangements by enabling the working together among some of their core 
components even absent more ambitious harmonization at the international 
regime level.82

AI Governance for an Uncertain Future

This chapter has explored AI governance as a normative field from a pre-
dominantly descriptive perspective. Developing detailed prescriptions at 
the level of concrete norms from such an initial mapping exercise during the 
early stage of AI governance with little empirical evidence about what works 



	 Navigating AI Governance	 89

under what conditions is at least problematic from a methodological per-
spective. Therefore, the analytical lenses introduced in the previous section 
and the discussion of possible normative patterns within and across AI gov-
ernance arrangements suggest at least a number of considerations when 
contemplating additional interventions to regulate the development, de-
ployment, and use of AI. Specifically, the discussion in this chapter offers 
five key takeaway points.

First, the complexity and heterogeneity of AI governance as an evolv-
ing normative field suggest the adoption of an ecosystem perspective when 
considering additional initiatives aimed at steering the development, de-
ployment, and use of AI. Metaphorically speaking, the AI governance 
landscape resembles more a tropical garden rather than a formal garden 
with neatly trimmed lawns, arranged flower beds, and precise geometric 
designs. Without pushing the analogy too far, future AI governance in-
terventions like tropical gardening require interaction with the sociotech-
nological environment, a deep understanding of the cultural, societal, 
economic, legal, and other relevant contexts, and a sense for integrating 
governance initiatives within the surrounding environment.

Second, the mapping of various AI governance arrangements along a 
number of interacting spectrums—such as sectoral versus horizontal ap-
proaches, soft versus hard law, outcomes versus risk-based, or principles 
versus rules-based approaches—as well as the different functions of gov-
ernance norms, principles, standards, and decision-making procedures 
point toward a broad range of available approaches, strategies, and tools in 
the AI governance toolkit. Future regulatory initiatives should consider the 
full range of instruments available and select them based on their fit for pur-
pose when addressing specific AI governance issues. Ultimately, the se
lection of tools will need to be guided not only by features such as efficacy 
and efficiency but also by overarching values such as legitimacy, account-
ability, and fairness.

Third, any future governance initiative needs to be designed and im-
plemented with context in mind. The discussion in the preceding sec-
tions has highlighted a number of such contextual factors and alluded to 
legal path-dependencies, the political economy, and geopolitical dynamics 
among the forces at play. While AI governance arrangements from other 
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Table 5.1. How functions, instruments, and normative patterns interact within and 
across AI governance arrangement and what (selected) governance issues they 
typically address

Functions Instruments 
and 
mechanisms

Normative  
patterns

Main AI 
governance  
issues

Examples

Constraining Prohibitions Protection of 
established rights; 
protection of 
established 
positions; market 
functional 
patterns

Existential risk; 
democratic 
erosion; freedom 
and autonomy

Chapter II EU 
AI Act (Prohib-
ited AI 
Practices)

Pre-market 
obligations

Performance 
outcomes, incl. 
security, safety, 
privacy, nondis-
crimination 
(bias), fairness

Chapter III 
Section 2 EU AI 
Act (Require-
ments for 
high-risk AI 
systems)

Certification, 
registration

Responsibility, 
incl. 
accountability

Chapter III 
Section 5 EU AI 
Act (. . . ​
conformity 
assessment, 
certificates, 
registration)

Enabling Funding, 
subsidies

Fostering innova-
tion; protection of 
established 
positions

Performance 
outcomes; 
sustainability; 
geopolitical 
competition

US Executive 
Order (various 
provisions)

Capacity 
building

Fostering innova-
tion; market 
functional 
patterns

Performance 
outcomes; 
Geopolitical 
competition

US Executive 
Order (various 
provisions)

Sandboxes Performance 
outcomes, 
evidence-based 
policy

Art. 38 and Art. 
39 Brazilian AI 
Act Draft 
(measures to 
encourage 
innovation)
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contexts—for instance, from other regions—might serve as sources of in-
spiration, recent experiences with the General Data Protection Regulation 
offer a cautionary tale when it comes to legal transplants that ignore the 
contextual realities in which they are supposed to be adopted. Debates 
about a possible Brussels effect originating from the EU AI Act need to 

Table 5.1. (Continued)

Functions Instruments 
and 
mechanisms

Normative  
patterns

Main AI 
governance  
issues

Examples

Leveling Transparency Market functional 
patterns; protec-
tion of established 
positions; 
protection of 
established rights

Explainability; 
trustworthiness; 
accountability

S. 11 Canadian 
AIDA Draft 
(publication of 
description)

Education, 
training

Fostering innova-
tion; market 
functional 
patterns

Labor displace-
ment; job 
quality; 
performance 
outcomes

US Executive 
Order (various 
provisions)

Cross-cutting Rulemaking Protection of 
established rights; 
protection of 
established 
positions; market 
functional 
patterns

Accountability, 
compliance, 
enforcement

US Executive 
Order (various 
provisions)

Auditing US Executive 
Order (various 
provisions)

Oversight S. 33 Canadian 
AIDA Draft (AI 
and data 
commissioner)

Sanctions Chapter XII EU 
AI Act (incl. 
penalties)

Note: The table connects the sections “Approaches to AI Governance” and “Mapping Normative Pat-
terns” and benefits from the concise overview of AI governance issues and interventions by the 
Working Group on Regulation and Executive Action of the National AI Advisory Committee (NA-
IAC), “Rationales, Mechanisms, and Challenges to Regulating AI: A Concise Guide and Explana-
tion,” Non-Decisional Statement.
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consider these complexities and limitations, particularly vis-à-vis major-
ity world countries.

Fourth, the select initiatives touched on in this chapter, featuring a small 
subset of AI governance arrangements currently in the making, give a sense 
not only of the heterogeneity of relevant principles, norms, standards, and 
decision-making processes but also point toward an enormous degree of 
complexity at the implementation level. Future AI governance initiatives 
should not only specify what problem they seek to address in what con-
text and through what means, but in parallel invest in capacity building 
to enable and empower key actors both in the private and public sectors to 
turn abstract principles and norms into actual practices. Such capacity 
building requires multistakeholder and increasingly international coop-
eration and has significant implications for the education and training of 
civil servants and private sector leaders alike.

Last, the descriptive engagement with selected elements of various AI 
governance arrangements suggests a series of broader design questions 
when it comes to guardrail-making amid an increasingly discontinuous 
future in front of us. From the vantage point of guardrail design more gen-
erally, AI governance—and not only AI—should be human-centric by guid-
ing and supporting individuals to make better decisions considering 
socially desirable outcomes that define us as communities and hold us to-
gether as societies. Such a perspective not only suggests a critical examina-
tion of the suitable principles, norms, standards, and decision-making 
processes to govern AI but also highlights the importance of appropriate 
requirements that guide the design of such rules, including principles such 
as guardrail diversity, variability, plasticity, and self-constraint.83
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CHAPTER 6

Challenges to Evaluating Emerging 

Technologies and the Need for a Justice-Led 

Approach to Shaping Innovation

Alex John London

As it is useful that while mankind are imperfect there 

should be different opinions, so it is that there should 

be different experiments of living; that free scope 

should be given to the varieties of character, short of 

injury to others; and that the worth of different modes 

of life should be proved practically, when any one 

thinks fit to try them.

—Mill, On Liberty, Chapter 3

Introduction

Innovation is inherently disruptive.1 It involves developing or discovering 
new ideas, new practices, new products, or new services (call these “ends” 
for convenience), or finding new ways to achieve established ends. It is also 
deeply social. In some cases, new ends compete with established ends for 
people’s attention or allegiance. In other cases, new ways of achieving the 
same end compete with old ways of achieving that end. In both cases, 
the disruptions of innovation can have a profound impact on the rights 
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and well-being of individuals. In some cases, this impact can be positive, as 
when individuals are better able to more safely or effectively advance ends 
that are important to them. But the disruptions of innovation can also have 
negative effects. Not all innovations are successful; some efforts to achieve 
new ends or to achieve established ends in better ways fail. When unsafe or 
ineffective technologies circulate, their use can produce direct harms, as 
when unsafe or ineffective medications subject users to toxic side effects, 
as well as opportunity costs from not having accessed a safer or more ef-
fective alternative. In other cases, successful innovation means that old 
ends or old ways of achieving established ends are placed at a competitive 
disadvantage and the people who identify with them, or who built their 
expertise or life around them, find themselves out of work or displaced in 
some other way.

A variety of parties whose interests are affected by innovation—
individuals, organizations, social institutions, government bodies, policy-
makers, lawmakers, and leaders in all sectors—would benefit from an ethical 
framework that would facilitate the assessment of innovative technologies 
and of the ecosystem of innovation from which they are produced. Such a 
framework would be valuable for a variety of reasons, but I focus on three 
in particular. The first involves normative guidance: It would be valuable to 
the extent that it helps these stakeholders determine when some techno-
logical innovation is disruptive but morally permissible, when such dis-
ruptions call for some type of social action, and what form such a response 
should take. The second involves the allocation of responsibility: It would 
be valuable if it could facilitate the process of identifying which agents or 
actors are responsible for intervening to eliminate, reduce, or mitigate the 
ethical concerns associated with a particular innovation. The third in-
volves tracking the health of the innovation ecosystem: It would be valuable 
for such a framework to facilitate the assessment of the ecosystem of inno-
vation, understood as the division of social labor and the rules, regula-
tions, laws, social structures, and institutions that shape the process of 
innovation in order to determine when this ecosystem is functioning in a 
way that is morally and socially justifiable and when it requires redress or 
improvement.
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In the following section, “ Distinctive Challenges to the Ethical Assess-
ment of Innovation,” I outline some of the factors that pose a challenge to 
any such framework. These factors include complexities around under-
standing or modeling the process of innovation, predicting the effects of 
innovation, and what the philosopher John Rawls referred to as the fact 
of reasonable pluralism—the idea that freedom promotes reasonable diver-
sity in moral values and commitments. In “ Pragmatic Approaches and the 
Neglect of Justice,” I discuss a common approach to navigating the fact of 
reasonable pluralism—namely, relying on a “thin” set of ethical principles 
that might be used to evaluate individual innovations and the innovation 
ecosystem. These values include the avoidance of harm or nonmaleficence, 
the provision of benefit or beneficence, and respect for autonomy, fairness, 
and justice. In “ Toward a Justice-Led Approach to Shaping and Evaluating 
Innovation,” I argue that these values are often interpreted in a way that 
places the greatest emphasis on a set of direct or immediate effects of in-
novation and that marks out the contributions of a limited set of stakehold-
ers. What is left out is a clear recognition of indirect or higher-order effects 
from innovation, stakeholders who influence these effects, and the way 
that these effects can influence considerations of justice. In “Conclusion,” I 
argue that these shortcomings might be mitigated by a framework that 
adopts a justice-led approach to assessing innovation and the innovation 
ecosystem.

Distinctive Challenges to the Ethical Assessment 
of Innovation

The ethical assessment of innovation is complicated by at least three distinc-
tive factors. The first has to do with freedom and decentralization. At the 
most general level, the decision to employ one’s intellect, time, and re-
sources in the service of discovering new ends or new means to achieve es-
tablished ends is morally permissible, if not morally meritorious. It is 
morally permissible because it falls under the broad liberty to pursue a life 
plan of one’s own. This liberty is itself grounded in two very basic values. 



102	 Chapter 6

The first is respect for individual autonomy, that is, the ability of individu-
als to decide how they want to live and to make momentous decisions for 
themselves is valuable because these freedoms allow individuals to express 
their individuality, they are central to a person’s status as an agent, and they 
capture a person’s interest in exerting fundamental influence, if not con-
trol, over how their life goes. Second, the ability of persons to pursue a life 
plan of their own is fundamental to their well-being—to their ability to 
lead a life that advances their interests and in which they find satisfaction 
and fulfillment. Individuals who engage in the process of inquiry, experi-
mentation, and discovery necessary for innovation often do so because 
such activities are personally rewarding and part of what they regard as a 
good life.

Beyond being merely permissible, the decision to employ one’s intellect, 
time, and resources in the service of discovering new ends or new means 
to achieve established ends is often morally meritorious. The reason is that 
innovation is rarely a purely personal act. As the philosopher John Stuart 
Mill noted, the knowledge of how to achieve new ends, or how to more ef-
fectively or efficiently achieve established ends, often propagates through 
society so that the benefits produced through innovation are enjoyed by 
many people. As a result, the process of innovation is often a socially valu-
able activity to be encouraged.

Academic freedom can thus be seen as a value that sits at the conflu-
ence of these two contributories: It protects the rights of individuals to pur-
sue their interests and reflects the idea that, in the aggregate, the free 
pursuit of novel ideas is likely to contribute to social progress.2 A legitimate 
social role for government in an open society, a society in which individu-
als generally have the liberty to decide how they want to live and how they 
want to employ their time and energies, is to find ways to manage the risks, 
costs, and burdens of innovation so that they are fairly distributed and out-
weighed by the resulting social benefits.

In an open society, the process of innovation is often decentralized. 
This is not to say that in an open society there will be no efforts to cen-
tralize innovation—to facilitate state-sponsored initiatives in science or 
health—since open societies often do undertake such efforts. It is simply to 
say that government action will not be the only avenue for innovation and 
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that even when governments are the sponsor of innovation, the process of 
innovation will often be carried out by entities outside of government. In-
dividuals and associations such as corporations, philanthropies, nonprof-
its, and other entities can be sources for the discovery of new ends, better 
means, or for the innovative use of new technologies. Additionally, the 
process of innovation is not limited to the developers of new technology. 
Developers may produce a technology with a particular set of goals or uses 
in mind, but other individuals may use that technology as an occasion for 
further innovation. For example, the smartphone created a platform for a 
multitude of developers to create mobile applications, and end users are 
free to put these devices and their associated software to use in practices 
that might not have been foreseeable prior to the invention of this plat-
form. If all else is equal, the freedom to experiment and to innovate this 
way is grounded in the same respect for individual freedom, autonomy, 
and well-being just discussed.

As a result, the parties involved in innovation can be quite diverse, rang-
ing from individuals, small groups or clubs, to philanthropies, nonprofit 
organizations, private and public corporations, educational institutions, 
or entities within local, state, or national government. Some of these par-
ties make decisions as individuals while others make decisions through a 
complex division of social labor, as when corporations or government 
bodies make decisions. Some of these parties are also deeply enmeshed in 
social roles, social structures, or a division of social labor that entails dif
ferent sets of prior obligations or commitments that guide or constrain 
their behavior. Likewise, their activities fall into different sectors of social 
life, from private hobbies to consumer products, individual or public 
health, employment, banking and finance, criminal justice, security and 
defense, political participation, the provision of essential social services, 
and so on. Activities in these different spheres may differ in the ethical is-
sues they raise since they affect different rights and interests of persons or 
implicate the functioning of social structures with different social func-
tions and expectations.

A second factor complicating the ethical assessment of innovation stems 
from the degree of uncertainty surrounding this process and the difficulty 
of predicting how it will unfold and what its outcomes will be. Individuals 
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or groups who set out to create or to discover something new often fail 
and it can be difficult to predict which of their efforts will succeed. Simi-
larly, some efforts at innovation succeed, but not in ways that were origi-
nally intended.3 As a result, innovation is often fortuitous, with efforts to 
develop something in one area or domain or for one purpose resulting in 
the ability to achieve some different purpose in a different area or domain. 
Likewise, it can be difficult to envision how technologies developed to ad-
vance one set of goals or purposes might be used in unexpected or inno-
vative ways.

The impacts of innovation are not simply a function of the relationship 
between a technology and an end user. The emergence of a new technology 
can alter the way that individuals or groups divide social labor, can shift 
the nature and function of social roles, and can lead to unforeseen uses that 
have further impacts on social relationships, opportunity, and the relative 
costs or ease of performing certain tasks, the relative value of those tasks 
in a reconfigured environment, and so on. Similarly, the sectors of social 
life are not static. Innovations in one sector can affect opportunity in others 
or shift the boundaries between sectors.4 This in turn can blur lines regard-
ing which set of established norms should be used to evaluate, govern, or 
regulate a new technology and challenge the utility of the way those norms 
have been articulated and enforced.

As a result, the interests that are potentially affected by innovation can 
be extremely diverse. They can include interests that are very specific to an 
individual because they are tightly bound up with an idiosyncratic feature 
of their particular life plan, to interests that are widely shared because they 
are grounded in a human right. Uncertainty surrounding the process and 
outcomes of innovation entail that these impacts can also be difficult 
to foresee.

A third factor complicating the ethical assessment of innovation stems 
from complexity of the relevant normative considerations. On a very broad 
level, open societies are characterized by what the philosopher John Rawls 
refers to as the fact of reasonable pluralism.5 The basic idea here is that in-
dividuals pursue a variety of life plans, often built around a diverse set of 
“thick” or “substantive” conceptions of the good life. By a conception of the 
good life, we simply mean a set of goals, values, and ideals that mark out 
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some activities as valuable, worthwhile, or beneficial and others as harm-
ful, ignoble, or lacking in worth.6 As an extremely simplified example, some 
people are deeply religious and will forsake wealth or popularity in service 
to their particular faith tradition; others may regard religion as silly super-
stition. Some people value music and spend long hours practicing an in-
strument, whereas others value the exploration of wide-open spaces and 
would find being cooped up in a room doing the same thing over and over 
the worst possible existence.

Because different individuals care about, and are committed to, differ
ent goals, activities, and ideals, their interests will be advanced or set back 
by different activities and outcomes. This is centrally relevant to innova-
tion since some people may be deeply invested in, committed to, or may 
identify with activities or technologies that are displaced by innovation. 
Individuals who identify deeply with their role in the ice industry, the tele-
graph, the whale-oil industry, steam engines and the like will find these 
important interests set back by the development and diffusion of refrigera-
tion, telephony, electricity, and internal combustion or electric engines. 
For others, the development of these new technologies may be an unalloyed 
benefit as it enables them to advance more of their interests more effec-
tively and efficiently.

The fact of reasonable pluralism adds to complexities already mentioned 
surrounding the diversity of the parties involved in innovation, the sectors 
in which innovation can take place, and the extent to which disruption in 
these sectors affects interests that are peculiar to individuals or widely 
shared because they are grounded in some kind of basic human, social, 
ethical, or legal right. For example, in many countries, health care contexts 
are governed by a different (usually stricter) set of norms, rules, regula-
tions, or laws compared to consumer products or other business contexts. 
Likewise, innovations that take place within, or have a significant impact 
on, relationships between doctors and patients, or lawyers and their cli-
ents, individuals and the police, may have different implications from in-
novations that involve producers and consumers of consumer products.

An acceptable framework for assessing the ethics of technological in-
novations and the innovation ecosystem should be broad enough to recog-
nize the full range of stakeholders whose activities may be relevant to ethical 
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appraisal, capable of recognizing how social structures mediate social in-
teractions and alter the division of labor and responsibility, and of differ-
entiating disruptions from innovation that are morally permissible from 
those that rise to the level of an injustice and therefore call for social 
solutions.

Pragmatic Approaches and the Neglect of Justice

Efforts to develop ethical and policy frameworks to evaluate the process of 
innovation or the impact of novel technologies have been sensitive to the 
prospect that they must be capable of providing guidance to stakeholders 
in a diverse society in which there may be reasonable disagreement over a 
wide range of issues. This has motivated approaches that are pragmatic in 
the sense that they do not claim to be grounded in a single, “thick” or sub-
stantive, “comprehensive theory” of the good, the good life, the good soci-
ety, or other set of ethical, social, or political ideals. Instead, proponents 
appeal to constructs that are supposed to be “thin” or “freestanding,” in the 
sense that they are supposed to have normative force without being tied to 
and dependent on any single comprehensive theory.

As examples, some have appealed to what they call “common morality,” 
understood as something like a set of pre-theoretical intuitions or commit-
ments that are widely shared and regarded as so important that they need 
to be accommodated within (rather than overridden or eliminated by) 
thicker or more substantive conceptions of the good or the good life.7 A sim-
ilar idea is that there are certain values that function as “midlevel princi
ples,” in the sense that they group and explain a wide range of judgments 
about particular cases while being common elements within different sub-
stantive comprehensive theories.8 A related concept appeals to what Rawls 
calls an “overlapping consensus” of reasonable views.9 Here the idea is that 
there may be a multiple competing comprehensive theories and that these 
theories may differ in the way that they justify various claims, but that they 
often overlap in their endorsement of particular norms or values and the 
judgments that flow from them.



	 Challenges to Evaluating Emerging Technologies	 107

Although different approaches frame the elements of these thin frame-
works slightly differently, they commonly include the following.10 Nonma-
leficence is generally understood as the duty to avoid inflicting harm or 
imposing burdens on others. Beneficence is the duty to aid, assist, improve, 
or otherwise benefit others where possible. Respect for autonomy is the duty 
to respect the interest that other persons who have the capacity to make their 
own decisions have in being able to make those decisions for themselves. 
Fairness is the duty to treat like cases alike, to apply the same rules or to 
follow the same process for all individuals, regardless of features or char-
acteristics that are not directly related to some morally relevant aspect of 
the case, such as culpability, responsibility, merit, or desert. Finally, justice 
is widely recognized as an important element in many pragmatic ap-
proaches, but its content is often not clear.11 It is often regarded as a form of 
fairness, since it involves treating like cases alike and applying uniform pro-
cedures or rules, without a clear specification of the grounds to differenti-
ating these two concepts. In many contexts of professional ethics, appeals 
to these thin or freestanding constructs are bolstered by appeals to role-
related obligations of professionals. One of the oldest and most well-
developed examples is medical ethics, where the asymmetry of knowledge 
between doctors and patients, the dependency of patients on doctors, and 
the profound importance of health to human agency and well-being is seen 
as grounding a special obligation on the part of doctors to avoid harming 
patients, to do their best to advance patient interests, and to place those in-
terests above potentially competing interests.

Research ethics is the field that developed to regulate and evaluate 
the development of new drugs, devices, practices or procedures in medi-
cine. In research ethics, the principles of nonmaleficence, beneficence, 
respect for autonomy, and justice are codified in The Belmont Report: 
Ethical Principles and Guidelines for the Protection of Human Subjects of 
Research, a report of the National Commission for the Protection of 
Human Subjects of Biomedical and Behavioral Research (1979).12 There are 
conflicting views about whether the same norms from clinical medicine 
should also regulate the activities of researchers.13 Nevertheless, research 
ethics stands out as a branch of practical ethics that is tightly connected to 
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a clear set of regulatory requirements and a set of institutions and struc-
tures necessary to implement and to some degree even to enforce those 
requirements.

Although this pragmatic approach has many virtues, the neglect of jus-
tice produces significant shortcomings rooted in the extent to which the 
resulting frameworks are highly parochial.14 In particular, these approaches 
mark out as salient an incomplete set of actors, an incomplete set of impacts, 
and draw on local norms, often grounded in role-related obligations, to re-
solve conflicts among its values or principles. For present purposes, the 
main point is not to evaluate the merits of the assessments that these frame-
works facilitate but to emphasize the types of consideration that such ap-
proaches struggle to formulate and to address.15 To make these concerns 
concrete, I illustrate how they apply to research ethics and then consider 
how they generalize to the context of machine learning (ML) and artificial 
intelligence (AI).

Within research ethics, the dominant focus is on the relationship 
between two central parties: researchers and study participants. At the cen-
ter of this focus is the review of individual study protocols by independent, 
local review committees, referred to in the United States as Institutional 
Review Boards (IRBs). The purpose of the IRB is to review individual 
study protocols, where study protocols basically define the terms on 
which researchers will interact with study participants. These interactions 
are then assessed according to the set of values described earlier. That is, to 
address beneficence, researchers are expected to explain the goals of the 
study, the methods that will be used to achieve those goals, the value of the 
information that is expected to result from the study (as a proxy for bene-
fits to society), and any benefits that accrue directly to participants from 
participation. To address nonmaleficence, they must detail the risks to 
which participants will be exposed, the steps that will be taken to elimi-
nate unnecessary risks, to mitigate any remaining risks, and to show how 
risks that cannot be eliminated are justified in light of the benefits expected 
from the research. To address respect for persons, the protocol must also 
contain an account of the information that will be provided to potential 
study participants so that they can make a free and informed decision 
about whether to participate or not to participate. In cases where this kind 



	 Challenges to Evaluating Emerging Technologies	 109

of informed consent is not possible, the protocol must contain a justifica-
tion for a waiver of consent and specify the steps that will be taken to se-
cure informed consent from a proxy (in cases where participants themselves 
lack decisional capacity) or to inform participants that they have been in-
volved in research after the fact (e.g., in cases of research on interventions 
that are used in emergency circumstances). Finally, to address issues of 
fairness or justice, the protocol must contain a description of the process 
that will be used to recruit study participants and why this process is fair 
in the sense of not overburdening populations that are convenient, vulner-
able, or easy to manipulate, while taking steps to include populations that 
are often underrepresented in research.

The system of requiring IRB approval of research before it can be con-
ducted plays an important role in ensuring that abuses of the past are not 
repeated and helps to provide confidence on the part of study participants 
that by volunteering to participate in research, they are not submitting to 
treatment that is unnecessarily risky, abusive, or substantially different from 
what is described to them during the process of informed consent.16 Nev-
ertheless, this way of framing the oversight of innovation in biomedicine 
focuses primarily on direct or first-order effects of the interactions of re-
searchers and study participants. Consider now the broad range of issues 
that are not marked out as salient by this approach.

First, which research questions are asked and how research funds are 
allocated has a profound impact on which health needs are or are not the 
subject of investigation. This in turn has a direct impact on whether or not 
health systems can respond effectively, efficiently, or equitably to the diverse 
range of important medical needs that are represented in the populations 
they serve. The current capacity of health systems is the result of long his-
tories of social inclusion and exclusion including histories of oppression and 
racism but also histories of neglect and indifference. It is also the result of 
decisions about which health needs to regard as priorities, how to divide 
social labor for addressing these needs between public health, prevention, 
and medical care, how research fund should be allocated and what the re-
quirements are for bringing innovative products to market. Call this the 
problem of aligning the focus of innovation with the capabilities of social 
institutions.
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Second, many of the decisions described in the previous paragraph 
are often not made by researchers but by governmental agencies, such as 
the National Institutes of Health (NIH) or the National Science Founda-
tion (NSF), nongovernmental funding agencies, philanthropies, or private 
ventures, such as biotech startups or pharmaceutical companies. Politi-
cians, government employees, and corporate executives are rarely the focus 
of ethical discussion in research ethics. Yet their decisions have a pro-
found impact on whether a set of basic social institutions—systems that 
are responsible for individual and public health—have the knowledge and 
the means to respond safely, effectively, and equitably to the needs of the 
populations that depend on them and for whether communities perpetu-
ate or rectify health disparities that arise, at least in part from histories of 
exclusion, animus, or neglect, or abuse. Call this the problem of full cover-
age for accountability.

Third, IRBs evaluating individual trials on a case-by-case basis might 
regard each study as morally permissible while the portfolio comprised of 
those studies is morally problematic.17 For example, the resulting portfolio 
might be biased to favor the health needs of already advantaged groups, to 
favor health needs that are traditionally well-studied over health needs that 
have been neglected, or to advance the pecuniary interests of sponsors with-
out addressing priority health needs of the community. The portfolio as a 
whole might also expose more participants to worse risks than alternative 
ways of generating the same information through the application of differ
ent study designs. Similarly, the evidence gaps in a portfolio may shift risks 
and burdens to parties who are already burdened with excessive costs. This 
problem is partly a consequence of the first two points—the framework in 
question focuses on an overly narrow set of issues and actors. But it is also 
a function of the case-by-case approach to evaluation and the absence of 
guidance for evaluating larger sets of studies and larger strategies of decision-
making and the patterns of outcomes or impacts they will produce over 
time, including the bandwidth of information that can be achieved by dif
ferent ways of organizing a study portfolio and the evidence gaps that re-
main. Call this the problem of portfolio-level ethical issues.

Finally, each of the preceding points reflects a particular aspect of a more 
general fact—namely, that innovation takes place within a much larger 
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social ecosystem, one aspect of which is a division of labor among a mul-
tiple parties. One function of this division of labor is to shift or transfer the 
distribution of rights or responsibilities so that there is not a one-to-one 
correspondence between the actions of a party, the moral appraisal of the 
outcome that results from that action, and the responsibility to address that 
outcome. Researchers design and propose individual protocols. But which 
protocols are funded is a function of the decisions of funding agencies, 
which, in turn, is influenced by decisions of their leadership, donors, or pol-
iticians. A researcher who proposes a study to evaluate a drug in an adult 
population is performing an act that is morally permissible, if not morally 
meritorious. Whether that same intervention is ever studied in children is 
a function of decisions of a much larger set of stakeholders. But the knowl-
edge gap created by a system that does not promote studies in children, 
pregnant women, or similar populations, can create or perpetuate health 
disparities with detrimental consequences for the health and well-being of 
members of these groups. In such cases, although researchers are respon-
sible for the protocols they carry out, responsibility for the ecosystem that 
shapes the protocols that researchers propose often falls to other parties 
(e.g., policymakers, funding agencies, drug companies).

More broadly, the advent of new technologies and shifts in their use can 
cause workers who produced, maintained, or used supplanted technologies 
to lose their jobs. Developing new technologies is a morally permissible 
undertaking, as are the general steps it takes to offer a product in a com-
petitive marketplace. But losing a job is a serious setback to a person’s in-
terests, constituting harm. Nevertheless, it would be unreasonable to 
regard this consequence as grounds for holding that the development of 
innovative technology is morally wrong, and developers of new technolo-
gies are not commonly held responsible for these harms or for redress to 
the workers displaced by it. Rather, responsibility for mitigating the neg-
ative consequences of innovation on employment and for facilitating the 
ability of workers to transition between employment without serious ad-
verse harm usually falls to governments. Call this the problem of distrib-
uted responsibility.

Interestingly, discussions surrounding ethical and responsible develop-
ment and use of AI have been sensitive to the fact that these systems can be 
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developed or deployed in ways that recapitulate prior unfairness or injus-
tice. Primarily, this awareness arises because AI systems are trained on large 
datasets, and these datasets capture patterns in the underlying data-
generating process. In a society with sexiest discourse, corpora of text will 
contain sexist language. In a society with racist histories, the groups mar-
ginalized by such attitudes and practices will be underrepresented in data-
bases generated from the provision of medical care or other social services 
and overrepresented in databases used to police or penalize. Likewise, da-
tabases will contain demeaning or racist statements about groups that are 
subject to social animus and reflect associations between certain traits or 
characteristics and attitudes of normality versus aberrance, beauty versus 
ugliness, and competence versus incompetence. Training AI systems on this 
data can perpetuate these judgments and attitudes.18 Recognizing these re-
lationships and taking steps to effectively manage, mitigate, or eliminate 
these biases is extremely important.

Because these biases can be inherited from training data, the responsi-
bility for managing them is often seen as falling on the shoulders of devel-
opers. The problem is also framed in relatively narrow terms of discordance 
between training data and the ground truth in the relevant population. As 
a result of these assumptions, the vast majority of the burgeoning literature 
on fairness in AI focuses on statistical properties of model outputs, such as 
the relationship between false negatives and false positives along with a 
guiding assumption that the relevant considerations of fairness or justice 
are local—they have to do with the rules that should govern the distribu-
tion of specific goods, opportunities, or services.19 Against this background, 
the central assumption is that developers should ensure that each person 
receives equal treatment relative to this set of standards for local justice.

One problem with this focus on local justice derives from what I called 
the problem of portfolio-level ethical issues: Each algorithm evaluated on 
a case-by-case basis, evaluated solely for their conformity to considerations 
of local justice, might be morally acceptable, but the system of such algo-
rithms could be deeply unjust. This is possible because society is not just a 
collection of interactions that operate independently of one another. It is, 
rather, a network of interrelated interactions, often mediated by social insti-
tutions that affect overlapping aspects of people’s opportunities, capabilities, 
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rights, and interests. As a result, historical injustice in one domain, such as 
housing,20 finance,21 or policing,22 can have a profound, detrimental im-
pact on the health of oppressed populations, the quality of education avail-
able to them, their ability to take advantage of educational opportunities, 
their career prospects, their ability to vote or hold political office, their 
freedom to move and associate, their financial prospects, and other impor
tant rights and interests. Prior injustice in one aspect of society creates dis-
parities that reduce or impede the opportunities or capabilities of affected 
individuals or groups. When this is the case, norms of local justice in other 
parts of society can effectively ensure that disadvantaged populations re-
main at a disadvantage in transactions or relationships that take place in 
those domains.

As a result, upholding norms of local justice in the operation of impor
tant social institutions (such as access to education, opportunities for em-
ployment, and so forth) can serve to reinforce unjust disparities and social 
inequalities that arise from prior histories of unfair treatment. The myopic 
focus of local justice is poorly suited to the task of recognizing injustice in 
the operation of larger social structures (to the problem of structural injus-
tice) and to framing strategies for enacting justice as rectification—the 
process of rectifying unjust practices and mitigating their effects on disad-
vantaged parties with the goal of restoring relationships of equal standing, 
equal regard, and fair treatment.

The dynamics outlined in this section illustrate important shortcom-
ings in frameworks that focus primarily on developers or firms that develop 
particular technologies, the impact of particular technologies on users or 
the targets of the technology, and on issues of fairness that are framed as 
complying with the norms for local justice.

Toward a Justice-Led Approach to Shaping  
and Evaluating Innovation

The neglect of justice in practical ethics stems, at least in part, from the per-
ception that every formulation of this value is necessarily tied to and em-
bodies some thick, comprehensive conception of the good, the good life, or 
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the good community and that, therefore, it is incapable of securing the kind 
of widespread commitment necessary to guide policy in an open, pluralis-
tic society. This concern is not without merit since there certainly are com-
peting and potentially conflicting comprehensive conceptions of justice to 
which some people are deeply committed. But this prospect should not be 
a deterrent to identifying elements of justice that can make salient the ways 
in which innovation and innovations can affect important social institu-
tions, relationships, opportunities, or interests. Making these issues sa-
lient means not only drawing attention to them but highlighting reasons 
why they may need to be addressed and helping to identify which stake-
holders might have responsibility for redress. Such a framework need not 
provide complete solutions to the problems it identifies. But we cannot 
solve problems we do not formulate, and being able to formulate the ways 
in which innovation and innovations might raise concerns of justice can 
facilitate concrete action, even if this must play out within some larger 
political process.

A justice-led approach would begin by identifying the space within 
which diverse members of an open society have a claim to equal standing 
and equal regard. The idea that justice is fundamentally concerned with giv-
ing equal treatment to equals, and treating like cases alike, requires a spec-
ification of the respect in which individuals are equal and in which they have 
a claim to like treatment. The fact of diversity entails that individuals in an 
open society embrace and follow different substantive, first-order concep-
tions of the good. But amid this diversity, every such individual should also 
recognize that they share a higher-order interest in having the real freedom 
to formulate, pursue, and revise a life plan based on some first-order con-
ception of the good. This shared higher-order interest need not be grounded 
in or tied to any particular conception of the good. It can be grounded solely 
in the recognition that there is a more general respect in which each per-
son in a diverse, open society is engaged in the same kind of fundamental 
project (formulating, pursuing, and revising a life plan that embodies some 
set of ideals and values) and that this project is of deep personal and social 
importance to each of those individuals.

This shared interest constitutes a compelling ground for claims of 
equal standing and equal regard. First, it captures a social perspective that is 
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available to, and that has a compelling rational claim on, every individual in 
a diverse and open society. Different individuals embrace different val-
ues, goals, and ideals, but they can see one another as engaged, at a more 
general level, in a shared project that is of profound importance to 
each  individual. Second, from this higher-order perspective there are no 
grounds on which to regard any individual, or set of individuals, as in any 
respect better than, superior to, or more deserving than any other. Indi-
viduals who pursue different life plans, and so hold different values, are 
nevertheless equal in the sense that they each want to be free to formulate, 
pursue, and revise some first-order life plan. Third, this social perspective 
is consistent with and can accommodate all first-order life plans that are 
reasonable in the following minimal respect: They are not predicated on 
the domination or subordination of some other group or class of persons. 
This notion of reasonableness is not grounded in a thick conception of rea-
son but follows simply from the recognition that societies are constituted 
by distinct individuals, that every individual shares an interest in having 
real freedom to formulate, pursue, and revise a life plan of their own, and 
that at this more general level there are no grounds for regarding one indi-
vidual as superior to or as having any right to dominion or priority over 
any other.

Next, a critical role for, and criteria for the justification of, social insti-
tutions in a diverse, open society is to create and maintain conditions that 
secure and promote this shared interest. This includes institutions of gov-
ernment and security that affect the distribution of rights, privileges, and 
prerogatives as well as institutions that influence the distribution of social 
opportunity and material resources such as the institutions of individual 
and public health, provisions for a social safety net, and institutions that 
govern employment and market-based transactions and relationships. In-
stitutions that secure and promote this shared interest can be seen as sup-
porting the ability of these distinct individuals to function as free and equal 
persons.23

This focus provides normative guidance that can help stakeholders 
determine when the positive or negative impacts of the ecosystem of in-
novation or of specific innovative technologies is disruptive but not unjust 
and when these disruptions rise to the level of an injustice. First, because a 
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key function of basic social institutions is to uphold conditions that re
spect the moral equality of persons by securing their shared higher-order 
interest in having the real freedom to formulate, pursue, and revise a rea-
sonable life plan, these social institutions should be called into action 
when individuals face widespread threats to this shared higher-order in-
terest. The diffusion of innovative technologies can alter social conditions 
that affect this higher-order interest. In such cases, just social institutions 
should intervene to promote equal treatment and equal regard.

As an example, successful innovation often creates social circumstances 
in which some individuals can advance their personal ends more effectively 
or efficiently than others and this necessarily creates inequalities. When 
these advantages or disadvantages are limited to advancing or detracting 
from a person’s specific first-order life plan, then those advantages or dis-
advantages qualify as benefits or harms and fall under the rubric of.24 If this 
is all that is at stake, then these benefits or harms do not rise to the level of 
an injustice. The reason is that justice is not concerned with how well indi-
viduals are able to achieve the specific first-order life plan they set out for 
themselves—this is the domain of beneficence. Rather, justice concerns the 
higher-order interest of individuals in having real freedom to formulate, 
pursue, and revise some reasonable life plan.

Treating such inequalities as unjust per se would require that we refrain 
from producing innovative technologies unless they can advance the first-
order life plans of all individuals equally. But this is likely an impossible re-
quirement, since the diversity of life plans frequently involves zero-sum 
relationships involving rival goods—goods that cannot be enjoyed by mul-
tiple agents simultaneously. These include positional goods (e.g., being the 
best at something) and other scarce resources. Promoting equality by 
preventing advances unless those advances benefit everyone to the same 
degree relative to their distinctive life plan would require that we se-
cure equality by “leveling down,” which is to say, it would make some 
people worse off, without the prospect of making anyone better off, simply 
to ensure their equality to others. In other cases, innovation creates in-
equalities that directly influence the higher-order interests of individuals 
because the knowledge or the means that are produced cannot benefit all 
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persons equally. For example, advances in cancer research might extend 
the lives of or restore physical functioning to patients with one type of tu-
mor but not to all cancer patients. Similarly, there are cases where research-
ers first seek to establish that some technology works in what is regarded to 
be a comparatively easy test case before trying to extend its use to a wider 
range of applications. For example, hemophilia might be an excellent 
model system for gene-based therapeutics if it is believed to represent a 
comparatively simple application of a new technology. Initial successes in 
treating this condition would generate inequalities, since gene-based treat-
ments for other conditions would not be available in the same time frame.

Here again, promoting equality by prohibiting research that would 
save some lives just because we would not know how to save all others 
would be self-defeating. If all else is equal, stepwise innovation in which 
developers seek to unlock the benefits of an intervention in one case and 
then to extend it to others is morally permissible. The problem, however, is 
that frequently, all else is not equal.

In particular, this is another portfolio-level ethical issue. Problems arise 
when the portfolio of such decisions winds up tracking, and therefore, re-
capitulating histories of social exclusion and marginalization—as when re-
search systematically excludes women or members of marginalized groups 
or when research does not focus on health needs that are distinctive of such 
groups. Problems also arise when research is undertaken under the assump-
tion that successful efforts will be followed by further research only to see 
further research not carried out. This happens in drug development, for ex-
ample, when new interventions are tested in adults first but then subse-
quent trials in pediatric populations are not carried out.

Similarly, the proliferation of machine learning and artificial intelligence 
raises concerns about justice because, as we noted earlier, data on which AI 
systems are built often reflect patterns of social interaction in which spe-
cific groups have been subject to unfair treatment. The widespread use of 
this data creates models that can recapitulate these patterns of social 
inequality. The point here is that even when individual AI systems are de-
veloped to function in ways that primarily are valuable to individuals rela-
tive to their individual life plan, concerns of justice arise because social bias 
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is widespread and therefore likely to affect a broad range of datasets used 
to develop such systems and because the impacts of such problems are con-
nected to histories of exclusion and subordination. The widespread reca-
pitulation or exacerbation of these histories of exclusion and subordination 
creates an issue of justice because this adversely affects the higher-order in-
terest of affected groups in being treated as free and equal members of so-
ciety. There is, thus, a strong social interest in eliminating these disparities 
that applies across the full range of areas where these applications might 
be applied. It also generalizes beyond ML and AI. Disparities in technolo-
gies that adversely affect individuals from groups that have historically been 
subject to neglect, animus, exclusion, domination, or subordination threaten 
to recapitulate or exacerbate relationships that are antithetical to justice. 
Widespread acceptance of these disparities signals that some individuals 
have lower standing or status than others—a message that is also antitheti-
cal to justice. When social institutions act to reduce these disparities, it ad-
vances an important cause of justice—ensuring that all people are treated 
as free and equal.

Second, the critical role of basic social institutions in securing this 
higher-order interest of individuals combined with the diversity of needs 
and of circumstances entails a legitimate social interest in promoting in-
novation that can increase their effectiveness, efficiency, and equity. This 
provides normative guidance relevant to the problem of aligning the focus 
of innovation with the capabilities of social institutions. The importance of 
the ability of these institutions to function equitably follows from the fact 
that, relative to this shared higher-order interest, there are no grounds for 
regarding the needs of any individual or group as somehow superior to or 
more important than the needs or interests of any other individual or group. 
As such, these institutions should strive to function with equal efficacy for 
all members of the population they serve. However, histories of racism, able-
ism, sexism, and other forms of social animus, marginalization, or exclu-
sion have created unfair social disparities as well as deficiencies in the 
functioning of these institutions that exacerbate these disparities. There is 
thus a strong social and moral imperative to rectify these disparities and 
to promote the development of technologies that better enable important 
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social institutions to promote the real freedom of all individuals and 
groups.

The social imperative to ensure that these institutions function effec-
tively and efficiently is grounded in scarcity—the shortfall between re-
sources available and the needs of individuals or social groups—and from 
the critical role that these institutions play in promoting the real freedom 
and equality of the individuals whose lives they affect. It follows from 
these first two points that there is a strong social imperative to ensure that 
the dissemination and incorporation of new technologies does not under-
mine or detract from the ability of these social systems to function effec-
tively, efficiently, and equitably.

Here again, ML and AI have been used in applications that have nega-
tively affected the capacity of basic social institutions to function. In this 
case the resulting disparities affect the functioning of social institutions that 
have an immediate and direct impact on the ability of individuals to func-
tion as free and equal persons. Disparities in algorithms used in policing, 
sentencing, bail, or parole decisions are unjust because of the strong claim 
of each individual to equal standing and equal regard in this space. The 
same is true for disparities from AI systems that make decisions regarding 
employment, lending, banking, and the provision of social services. Such 
disparities are unjust even if they are not connected to prior histories of ex-
clusion, indifference, or subjugation because of the important role that the 
decisions and conduct of these social institutions play in securing this 
higher-order interests of persons. But such disparities can be, and often are, 
doubly concerning precisely because they are connected to, and do reca-
pitulate or compound, prior histories of subjugation.

Third, this approach provides a framework for addressing the problem 
of full coverage for accountability because it situates the activity of innova-
tion in a larger web or network of social relationships among a broader set 
of individuals and groups, highlighting the role of different stakeholders 
in shaping the process of innovation and allowing for a more explicit con-
sideration of the appropriate division of social and moral responsibility 
between these parties. This includes the relationship between developers, 
funders, regulators, policymakers, users, and various social institutions that 
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are required to serve specific social functions grounded in considerations 
of justice. All individuals in a society rely on these institutions to support 
and protect their higher-order interest in being able to formulate, pursue, 
and revise a life plan; these social institutions are sometimes called into 
action to support innovation (as when government agencies sponsor and 
support innovation directly, or when they carry out regulatory or legal func-
tions that shape the incentives of actors in this ecosystem); and these in-
stitutions are affected by the process and outcomes of innovation, as 
when their capacity to perform their functions depends on the capabilities 
of the technologies they deploy for this purpose.

Responsibility for identifying shortfalls in the capacity of important so-
cial institutions to secure and promote this higher-order interest for all 
community members falls to government leaders and to leaders in the rel-
evant social institutions, in consultation with community members. This 
includes identifying threats to this higher-order interest—from sickness, 
injury, and disease, environmental degradation, and hazards; to access 
to employment, social, economic and political opportunity, and social 
limitations imposed by the built environment; from social animus, exclu-
sion, or indifference; and from the way that novel technologies might unduly 
consolidate social or political power. These stakeholders also bear primary 
responsibility for identifying broad priorities for investing in innovation 
and development with the goal of reducing or eliminating these shortfalls 
and addressing these threats. This includes identifying and rectifying so-
cial inequalities that undermine the freedom or equality of individuals or 
groups including inequalities that stem from prior histories of animus, in-
difference, neglect, or other forms of domination or marginalization.

As an illustration of how this framework makes more tractable the prob
lem of distributed responsibility, this framework recognizes that individual 
innovators have broad liberty to pursue the ideas, programs, and projects 
that interest them. This follows from respect for the freedom of individuals 
and groups to pursue a reasonable first-order conception of the good and 
from the difficulty of identifying which avenues of innovation will suc-
ceed and how they might be taken up and adopted in innovative ways by 
others. To align this liberty with considerations of justice, policymak-
ers, regulators, funders, and other leaders have a responsibility to create 
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incentives that encourage individuals to explore avenues for innovation 
that connect to and address knowledge or capability gaps within these pri-
ority areas. This responsibility is not widely recognized, and it is a virtue of 
the current approach that it would make salient the responsibility of this 
wider range of actors and facilitate collaborative efforts to advance these 
important social goals.

Similarly, when it comes to identifying and averting portfolio-level eth-
ical issues, the present framework identifies social and political leaders, 
in conjunction with community members and the heads of entities that 
fund research or carry out innovation, to identify when patterns of local 
decision-making can recapitulate, exacerbate, or create patterns of social 
exclusion or marginalization, and then to intervene, whether through 
rules or incentives, to rectify such patterning. This can involve ensuring 
that the novel technologies that address distinctive needs of marginalized 
or minoritized groups are equitably funded, ensuring that novel technolo-
gies are developed in populations that include such groups, ensuring that 
novel technologies are extended to use cases that affect such groups and 
ensuring that sequential strategies for testing or development are funded 
and carried to fruition.

These examples represent problems that range beyond the purview of 
individual researchers. They arise because of the potential for repeated de-
cisions made solely on myopic criteria to recapitulate or exacerbate larger 
patterns of inequality, and they call for attention from a wider range of 
stakeholders including policymakers, research funders, and regulators. It 
is a virtue of the present framework that it can make salient such second-
order issues and facilitate the identification of parties in the innovation eco-
system who should bear responsibility for addressing these issues. This, in 
turn, can help lawmakers, policymakers, civic and corporate leaders, activ-
ists, and other community members craft rules, policies, norms, and in-
centives that discourage activities that threaten to undermine the equal 
standing of individuals and promote activities that enhance the ability of 
social institutions to secure and to promote this shared higher-order 
interest.

Finally, the approach outlined here provides high-level benchmarks that 
stakeholders might use to assess the relative health of the innovation 



122	 Chapter 6

ecosystem and the range of norms, rules, practices, regulations, and 
laws that constitute its governance structure. In particular, this ecosys-
tem is healthier if it has a governance structure that addresses the set of 
problems outlined here. In other words, innovation ecosystems are health-
ier to the extent that their governance structure identifies the full range of 
stakeholders with responsibilities in this area to ensure full coverage for 
accountability for the purpose of protecting the higher-order interests of 
persons and aligning the focus of innovation with the capabilities of social 
institutions. Similarly, the various incentives that influence the conduct of 
these agents should ensure that responsibilities are distributed to relevant 
parties and then enforced in a coherent manner, so that portfolio-level ethi-
cal issues can be identified and addressed.

Conclusion

This chapter outlines a justice-led approach to evaluating the innovation 
ecosystem and the innovations that it produces. The proposed framework 
is pragmatic in the sense that it is grounded on moral claims that should 
have wide purchase on diverse members of an open society without requir-
ing special commitment to some particular conception of the good, the 
good life, or the good community. It articulates a respect in which mem-
bers of a diverse, open society can see one another as free and equal, and it 
recognizes the special role that social institutions play in upholding this 
conception of freedom and equality. This position is consistent with broad 
respect for individual and academic freedom while also outlining mecha-
nisms that can be used to ensure that the division of social labor serves to 
expand the capacity of important social institutions to protect and advance 
the shared interest of those who depend on them. This breadth of scope cre-
ates a framework in which the activities and responsibilities of a broader 
range of agents can be articulated and evaluated. It is also not limited to 
the direct or first-order effects of specific agents on others. It can recognize 
impacts that arise from the cumulative or synergistic interactions of port-
folios of decisions.
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Clearly, this sketch requires additional work to flesh out key details 
and improve its relevance to policy. However, the framework outlined 
here is likely to be particularly sensitive to growing concerns about the 
impact of AI systems on democratic accountability, public discourse, the 
integrity of elections, and the role of science and evidence in democratic 
governance. The reason is that the role of government and the critical so-
cial institutions of government, within this framework, is to secure the 
higher-order interest that all persons share in having the real freedom to 
formulate, pursue, and revise a life plan of their own. When technologies 
proliferate in ways that threaten the ability of citizens to hold political 
leaders accountable, to identify truth from fabrication, to ensure the integ-
rity of elections, and to participate in democratic deliberation, these im-
pacts implicate issues of justice. Moreover, these impacts need not be tied 
to individual developers and their individual technologies. They can arise 
from the synergistic interactions of a multitude of novel technologies and 
from the conduct of stakeholders including corporate executives, lawmak-
ers, politicians, and ordinary people who use and abuse technology. This is 
an important area in which delineating conduct that is disruptive but mor-
ally permissible from conduct that is disruptive and morally problematic is 
particularly pressing. It is unlikely that such distinctions can be fruitfully 
drawn and defended without appeal to considerations of justice.
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CHAPTER 7

Bringing Power In: Rethinking Equity 

Solutions for AI

Shobita Parthasarathy and Jared Katzman

T here is great hope that artificial intelligence (AI) and machine 
learning (ML) can benefit society, from providing real-time trans-
lation to more accurate cancer screening. But there are also grow-

ing concerns that it is exacerbating social inequity and injustice. In recent 
years, media reports have revealed the serious negative consequences of the 
biases in AI datasets, including false arrests triggered by facial recogni-
tion technology.1 Meanwhile, despite the hope that AI will help criminal 
court judges reduce bias, its use seems to amplify structural inequalities 
in the justice system.2 The workers training algorithms to ameliorate bias 
receive little pay and labor under extremely stressful conditions.3 At the 
same time, AI tools meant to benefit marginalized communities are often 
inaccessible to them.4

In response to these emerging equity and justice concerns, policymak-
ers, academics, and the technical community have proposed solutions. The 
Blueprint for an AI Bill of Rights developed by the Biden administration 
recommends identifying statistical biases in datasets; designing systems to 
be more transparent and explainable in their decision-making; incorporat-
ing proactive equity assessments into system design, including input from 
diverse viewpoints and identities; ensuring accessibility for people with dis-
abilities; predeployment and ongoing disparity testing and mitigation; and 
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clear oversight.5 Scholars have suggested new evaluation capabilities for ex-
isting government agencies and even the creation of new regulatory struc-
tures.6 In parallel, the technology industry has focused on educating 
programmers about the impact of social biases on AI software and creat-
ing a market for fairness monitoring tools and services.7

These initiatives will surely address some harms. However, most do not 
address the social inequalities that shape the landscape of technology de-
velopment, use, and governance, including the concentration of economic 
and political power in a handful of technology companies and the system-
atic devaluation of lay contributions and perspectives, especially from those 
who have been historically marginalized. As a result, the proposed solutions 
are likely to fall short. To establish a better AI innovation ecosystem and 
more equitable and just technologies, we must develop solutions that ac-
count for these historical inequalities and power imbalances, in addition 
to addressing current concerns like bias and discrimination in model 
predictions.

Current Approaches to AI Inequities

Efforts to make AI more equitable rest on the growing realization that many 
communities, particularly those who have been historically marginal-
ized, have not benefited—and some have been harmed—by technology.8 
By equity, we mean “the overarching driver of a process for identifying 
and ameliorating structural and social conditions that disadvantage indi-
viduals and groups by unfairly limiting their freedom, their opportunity, or 
the conditions needed for well being.”9 In some cases, the problem is sim-
ply one of access. Prospective users may not be able to afford a technology or 
it is otherwise unavailable.10 In others, the problem is one of design: devel-
opers build a technology without understanding the needs and character-
istics of a user community, and sometimes even with biased assumptions.11 
This can ultimately have deleterious effects on communities that are al-
ready disadvantaged, especially because these assumptions and values 
are hidden in technical specifications. Finally, there are inequities even 
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early in the process, in terms of who gets to set priorities and how data that 
informs development is gathered and categorized.

AI equity solutions fit into four categories: technical, organizational, le-
gal/policy, and enhancing civic capacity. Technical solutions understand 
equity in terms of accuracy and focus on reducing disparities in model 
performance (often referred to as “algorithmic bias”).12 Technologists rec-
ognize that when an AI system does not perform equally for all groups of 
people, it can produce social exclusion, as when a Black smartphone user 
struggles to unlock their device using facial recognition technology,13 or 
when they cannot wash their hands in a public bathroom because the sen-
sor does not recognize their skin.14 To address such problems, developers 
try to improve the data, software, and other technical dimensions of a sys-
tem’s design. They may refine datasets to better represent diverse social 
groups, optimize AI algorithms to mitigate social biases, and implement 
more stringent quality assurance through additional testing. Inequalities 
become technical errors. For instance, when Joy Buolamwini and colleagues 
discovered that major facial recognition platforms had difficulties identi-
fying darker-skinned individuals and women,15 many companies responded 
by collecting photos featuring more dark-skinned and female faces and re-
training algorithms to take this additional data into account.16 In some 
cases, researchers may ask marginalized groups to provide input during the 
development process but give them no meaningful power to shape priori-
ties or influence results.17 This alienates these communities further.

Such solutions can only have limited impact because the datasets them-
selves are assembled in a structurally biased context. Algorithms designed 
to predict crime, for example, use historical data that reflect discriminatory 
policing practices.18 As a result, they tend to overpredict crime in commu-
nities of color that are already over-surveilled. And, characterizing data as 
the solution produces perverse incentives that can exacerbate dispropor-
tionate burdens. A contractor working for Google tried to fix inaccuracies 
in facial recognition technology by paying unhoused Black men in Atlanta 
a few dollars each to play with a phone.19 The phone took pictures of the 
men to improve the datasets without their informed consent. Then even 
when the AI is technically accurate, it can produce unjust outcomes. Cities 
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have used facial recognition cameras to curb the freedoms of residents in 
public housing, many of whom are Black, by aggressively surveilling and 
policing them.20

Organizational solutions deployed across the development process view 
people, practices, and programs as the route to achieving equity. Often used 
by the tech industry, they include initiatives to make the workforce more 
diverse and inclusive, “responsible AI” offices identify ethical principles to 
guide research and development by training technologists about the ethi-
cal and social dimensions of their work, supporting humanistic and social 
scientific research related to AI, and projects that bring user needs explic
itly into product design. Microsoft, for example, has issued multiple itera-
tions of its “Responsible AI Standard” to guide technology development 
across its organization.21 The Responsible Computing Challenge funded by 
the Mozilla Foundation trains the next generation of technologists to think 
holistically about technologies, considering them in social and political 
contexts.22

However, these solutions are often seen as auxiliary to the main proj
ect of technology development and are therefore dismissed. Ethics teams 
inside companies tend to be the first fired when the industry contracts 
economically.23 Even when the industry is stable, these teams lack re-
sources, authority, and ultimately impact.24 Consider the now-famous case 
of Google firing Timnit Gebru and Margaret Mitchell, who led the com
pany’s ethical AI group. Google tried to suppress a paper they coauthored, 
which discussed environmental harms and racial, gender, and other biases 
triggered by large language models.25 When the pair refused, the company 
fired them.26 Similarly, despite evidence that the rise of AI will place enor-
mous strain on electricity and water, disproportionately burdening mar-
ginalized communities,27 technologists tend to exclude such factors from 
their definition of responsible AI and ethical practices.28 After all, consid-
ering environmental impacts would raise the question of whether AI can 
ever be responsible. Ultimately, because the public is completely dependent 
on how technologists define responsible, ethical, and equitable AI, they can 
become little more than buzzwords.

The success of organizational solutions also depends on institutional 
culture. Even as they have increased their efforts to diversify their ranks, 
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tech companies have struggled to retain employees of color due to alienat-
ing work environments. One Black Facebook recruiter has recounted in-
sensitive comments and stereotyping in discussions about hiring,29 
while a Black Google recruiter reported inadequate pay and promotion 
opportunities for people of color.30 If the dominant communities in an 
organization are not reflective or open to change, it is impossible for a 
handful of employees or new initiatives to produce equitable or just out-
comes. Organizational culture also matters in AI use: Although the FBI has 
a training program for law enforcement officials who use facial recognition 
technologies, only 5 percent have taken it.31

Due to growing concern that tech companies cannot be trusted to po-
lice themselves, scholars, civil society groups, and even some technologists 
have turned to governments for help. Legal and policy solutions include tem-
porary moratoria and bans on specific applications, requirements for com-
panies to disclose AI use in “high-risk” decisions, and new government 
capabilities to assess the effectiveness of AI products. New York City passed 
a first-of-its-kind law in 2021 to regulate AI use in hiring practices. It re-
quires companies to work with independent auditors to evaluate, on an an-
nual basis, whether their tools exhibit bias in hiring decisions based on 
race or gender. Job candidates also have the right to request data col-
lected about them. The European Union’s pending AI Act will establish a 
regulatory approval process for technologies it deems high risk, includ-
ing for migration, asylum, and border control management and biometric 
identification.

Such laws represent a significant step toward addressing AI inequities 
by reducing inaccurate uses, preventing disparate impacts, and protecting 
civil liberties. However, they are often vague and difficult to enforce. The 
New York law does not adequately define its auditing requirement.32 As a 
result, AI companies will have financial incentive to seek lenient bias as-
sessments, and auditors, facing market pressures, will have little leverage 
to produce more critical and thorough reports.33

In addition, governments often justify moratoria and bans on the ba-
sis of perceived technical inaccuracies. Cities have banned facial recogni-
tion technology because of its poor performance among marginalized 
communities.34 But this does not grapple with the civil rights and liberties 



132	 Chapter 7

questions. For example, is it appropriate to allow facial recognition tech-
nology in neighborhoods that have suffered for generations due to exces-
sive surveillance?

Last, there are emerging efforts to enhance civic capabilities, empow-
ering the public to participate in discussions and even decisions regarding 
AI. This includes new social movements and new institutions to gauge, 
engage, and explicitly serve public priorities. The Ford Foundation’s Tech-
nology and Society Program tries to encourage a vibrant civil society 
surrounding digital technology, funding the Center for Democracy and 
Technology, the Leadership Conference for Civil and Human Rights, the 
People’s Tech Project, and the Distributed AI Research Institute. The 
United Kingdom’s Ada Lovelace Institute regularly conducts public dia-
logues on topics that include the responsible use of location data, trustwor-
thiness of data-driven public health responses, and the use of biometric 
identification technologies including facial recognition.35 The US National 
Science Foundation has tried to create the National Artificial Intelligence 
Research Resource to broaden access to AI development resources.36

This has enhanced public discussion and produced important critiques. 
But these organizations receive very little funding compared to the invest-
ment in technology design,37 and as a result they are often spread quite thin 
and end up chasing after individual technologies rather than first imagin-
ing the society they want and then considering the role they want technol-
ogy to play. Many also focus on representing the public as a whole, which 
means that they may be less adept at identifying issues of specific concern 
to marginalized communities. Finally, because these efforts are almost al-
ways institutionally separate from technology development and policy mak-
ing, their impact is limited. Consider, for example, the ongoing discussion 
about the potential for existential risk from AI, initiated by a letter signed 
by the CEOs of major technology companies in March 2023. This frustrated 
civic tech leaders, who for years have called attention to the harms and in-
equities, including algorithmic bias, already produced by AI.38 But in com-
parison to the worries about existential risk, their concerns have had little 
impact. In fact, some civic tech leaders signed the existential risk letter so 
that they could bring some attention to their concerns, not because they 
worried that AI would kill us all.39



	 Bringing Power In	 133

Structural Inequity in Science and Technology

The aforementioned efforts to address equity are serious and well-meaning, 
but by and large they do not take into account the historical power imbal-
ances that mark the AI ecosystem. As a result, they are likely to have limited 
impact. In particular, we point to two things: the economic, political, and 
epistemological influence of technologists and the tech industry; and the 
systematic discrimination some communities have faced in science and 
technology for generations. Both, we argue, shape what counts as an equity 
problem, what counts as a solution, who participates, and how they do so.

Technologists have long had an authoritative role in Western societies. 
In the early days of the United States, the founders saw the development of 
new inventions as key to the country’s prosperity.40 This enthusiasm only 
accelerated in the twentieth century, after the Manhattan Project demon-
strated that scientists and engineers could produce technologies for the na-
tional interest.41 Western governments began to increase their investments 
in research and development and to view innovation as the route not only 
to national security and economic competitiveness but also social progress.42 
As the technology industry began to grow, then, it was naturally the object 
of great pride and fascination. Microsoft, Google, Apple, Amazon, and Face-
book were not only creating products that the public seemed to want, but 
they had significant economic value. Excited by their potential, governments 
were reluctant to hear concerns or regulate them.43 They have since become 
so dominant that they are known as “platforms,” where they control mul-
tiple markets and the behavior of other companies.

This has created concentrated economic power: in 2023, eight of the ten 
richest people in the world made their money in tech, and the six big tech 
companies accounted for nearly all of the S&P 500’s return.44 Ultimately, 
this produces political power (these companies not only spend significant 
sums lobbying policymakers but try to cultivate a positive public image) and 
shapes the research ecosystem. They fund far more AI research than gov-
ernments or philanthropic foundations, so the resulting technologies are 
likely to reflect their needs and priorities. Even most (58 percent) of “ethi-
cal tech” researchers receive their funding from industry,45 which likely lim-
its the strength of their critique.
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Finally, AI researchers–whether in industry or academia–are demo-
graphically homogeneous. In the United States, most of the people with an 
undergraduate degree in computer science are male and either white or 
Asian.46 Likely as a result, the industry is less diverse than the private sec-
tor as a whole.47 The demographic homogeneity also creates an alienating 
masculine culture in innovation spaces, which then reproduces the prob
lem.48 Employees from disadvantaged communities of color are more likely 
to provide catering or custodial services.49 The global landscape echoes these 
inequalities, with workers receiving shockingly low wages to perform high-
stress jobs like content moderation and image tagging.50

Structural inequality has even deeper roots in the history of science and 
technology. The power of innovators with formal technical expertise, who 
can contribute to the marketplace, has erased the contributions of indige-
nous knowledge systems until relatively recently,51 not to mention the ex-
periential knowledge of citizens who may have different priorities than 
scientists or engineers. A long legacy of mistreating the participants in 
research—including the famous Tuskegee syphilis experiment, the use of 
Henrietta Lacks’s cells across biomedicine, and the unhoused Black men 
who did not consent to improve Google’s facial recognition technology—
has led marginalized communities to be skeptical of technological innova-
tion even when it is designed to benefit them. Significant portions of the 
US Black community, for example, have refused the COVID-19 vaccine 
because they question the intense public health attention. Marginalized 
communities have also experienced devastating neglect, which can be a 
matter of life and death. For years, scientists have known that the pulse ox-
imeter, used to measure blood oxygen during the COVID-19 pandemic, 
was inaccurate among those with darker skin. As a result, those who need 
supplemental oxygen may not receive it.52 It was only after 2020, when an 
anthropologist sounded the alarm in the wake of George Floyd’s murder 
and physicians confirmed the problem, that health ministries around the 
world took notice.53 While technical communities and policymakers may 
treat such problems as minor, isolated errors, marginalized communities 
see them as examples of structural inequality, justifying their frustration 
with science and technology.
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Ultimately, the concentration of power in the tech industry combined 
with structural inequality make it very difficult to produce more equitable 
and just AI. A handful of tech leaders shape the definition of AI problems 
and promote a simplistic understanding of the relationships between tech-
nology and society, including assumptions that technologies usually have 
beneficial impacts and can easily fix societal ills. These are the understand-
able assumptions of those whose lives have generally improved with tech-
nology, but they have serious consequences for others.

Bringing Power into AI Equity Solutions

To ensure that AI ameliorates, or at least does not exacerbate, the structural 
inequities we have identified, we must reimagine the four types of solutions 
already described. Technical solutions that account for power would focus 
scientists and engineers on the concerns of marginalized people, rather than 
the other way around.54 This starts with agenda-setting: Research funders or 
technologists might begin by asking a community about the biggest chal-
lenges they face and then determine development priorities accordingly. The 
partnership would continue throughout the design process, so that citizens 
may provide their expertise and feel some ownership over the project and 
so researchers can establish trust with the community.

In Pittsburgh, for example, a technical team led by computer scientists 
at Carnegie Mellon University (CMU) worked with community members 
to build a technology that monitored and visualized local air quality.55 The 
collaboration began when the researchers attended community meetings 
and learned about residents’ concerns about air pollution from a nearby fac-
tory. Residents had previously struggled to get the attention of local or na-
tional officials because they were unable to produce enough quantitative 
data in a timely fashion. The researchers listened to the residents’ plight, 
built prototypes, and then altered the technology in response to community 
input. Eventually, their system brought together heterogeneous data, includ-
ing crowdsourced smell reports, animated smoke images, finer air quality 
data, and wind information, which the community then used to trigger 
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government action—EPA administrators agreed to review the factory’s 
compliance, and later that year, the parent company announced its clo-
sure. This approach, however, required openness and humility from the 
researchers, recognition of community expertise, a desire to empower mar-
ginalized people, and willingness to suppress technical priorities in favor 
of the needs of the neighborhood.56

Organizational solutions that alleviate structural inequality require 
leaders to identify how culture, language, norms, and daily practices can 
reinforce the power of certain groups and then work to change them. Di-
versifying an organization without this attention will simply produce more 
alienation and scandal. Technical organizations must clearly demonstrate 
their openness to hear hard truths about their own privilege, understand 
how historically disadvantaged people may be disproportionately harmed 
by their work, and prioritize solutions. To achieve this, all tech companies 
should have teams that focus on the equity dimensions of AI and report 
directly to the CEO. Such teams would weigh in on major research and 
development decisions, would be given long-term funding commitments, 
and would receive whistleblower protections.57 Universities also have an 
important role to play in training the next generations of scientists and 
engineers to understand the discrimination and harms perpetrated by 
their forebears; few people know, for example, that the academic field of 
statistics—which underlies AI—is rooted in eugenic ideology.58 Today, 
universities may require STEM students to take a single course on profes-
sional ethics.59 Instead, they should integrate attention to the equity, so-
cial, and ethical impacts of AI into core technical courses.60 And humanists 
and social scientists should teach this content to disrupt the conventional 
privileges afforded technical experts. After all, these experts offer deep 
knowledge of how technology works in society. Finally, government agen-
cies and philanthropic foundations who have begun to encourage research 
into the implications of AI should facilitate equitable multidisciplinary 
collaborations.

Scholars have envisioned a variety of legal and policy tools that take 
power imbalances seriously. This includes algorithmic impact assessments 
(AIAs), which governments could use to assess the risks and benefits of a 
particular technology before it is deployed.61 Similar to environmental 
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impact assessments required for new development projects and govern-
ment reviews of new drugs, they would require government officials to an-
swer a standard battery of questions about the impacts of the system’s 
technical attributes, which would result in a final impact score that would 
determine its regulation.62 However, focusing on the technical dimensions 
of the system is insufficient. AIAs must consider the social implications. In 
its report on the benefits and harms of facial recognition technology in 
K-12 schools, New York state’s Office of Information Technology Services 
considered not only accuracy but also the likelihood that the technology 
would exacerbate bias and harm against already marginalized communi-
ties.63 Even if facial recognition technology became more accurate, the 
Office concluded, it would violate civil rights and liberties. The state legis-
lature banned this use in response to the report.64

Others have suggested more deliberative approaches to increase civic ca-
pacity. In the case of genomics and biotechnology, Osagie Obasogie advo-
cates for race impact assessments that are collaborative and involve multiple 
stakeholders.65 Systematically incorporating marginalized communities 
into algorithmic impact assessments could also help to empower them and 
ultimately alleviate structural inequalities. Key, however, is to link demo
cratic deliberation to decision-making; otherwise these citizens will feel fur-
ther exploited and neglected.66 Before launching an initiative to bring 
people with disabilities more centrally into tech innovation, for example, 
Borealis Philanthropy and the Ford Foundation appealed to an advisory 
committee made up of people with disabilities who offered a range of ex-
pertise.67 Over the course of a year, the committee identified priorities, of-
fered strategies to address harms at the intersection of disability and 
technology, and nominated and selected the inaugural cohort of grantees. 
Experts can also help community organizations advocate for more just AI 
development and use. The University of Michigan’s Science, Technology, 
and Public Policy Program has established the Community Partnerships 
Initiative, which responds to the concerns and priorities of organizations 
in Detroit and southeast Michigan with research and analysis.68 For exam-
ple, it produced a policy brief on acoustic gun detection systems, which 
enabled We the People Michigan to challenge Detroit’s investment in the 
technology.69
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Distributing Responsibility for AI and Equity

More serious attention to structural inequality and the power imbalances 
they produce will require all the participants in the innovation ecosystem—
innovators, customers, funders, regulators, and the public—to take on ad-
ditional responsibilities. AI innovators must abandon the notion that their 
work is politically neutral and objective and recognize that if they seek so-
cietal benefit rather than harm, they must engage a diverse populace 
throughout the process, even at the priority-setting stage. They must treat 
these communities with respect, which includes taking their advice espe-
cially when they sound alarms, paying them, and making transparent de-
cisions.70 Innovators must also understand that social context will shape the 
impact of technologies they build, both positively and negatively. In other 
words, technologies are only solutions if they fit with the culture, conven-
tions, and relationships in a particular place. For interventions to have the 
benefits technologists seek, they should work with historians, sociologists, 
and anthropologists who can offer deep understanding of communities and 
the relationships between technology and society.

Meanwhile, those that purchase AI must develop the capacity to inquire 
about datasets and algorithms and the structural inequalities that they may 
hide and perpetuate. In some cases, they may be able to force technologists 
to change the technology. But even when they cannot, they can guide those 
who ultimately use the technology regarding its limitations and processes 
that may minimize harm to vulnerable communities.

Funders, whether public, philanthropic, or private, also have an impor
tant role to play. They can include marginalized communities on advisory 
committees that set funding priorities, and privilege these insights with 
the understanding that they have had virtually no voice in the history of 
technological innovation thus far.71 Funders will also need to think quite 
differently about innovation. For AI to achieve important goals such as 
improving cancer survival rates or mitigating climate change among vul-
nerable communities, funders must recognize that the problems are simulta
neously social and technical and create research opportunities accordingly. 
Funders can provide incentives, or even require technologists to collabo-
rate with marginalized communities, humanists, and social scientists on 



	 Bringing Power In	 139

individual projects, to ensure that they redress historical inequities. Pri-
vate sector funders can provide incentives to technologists who consider 
equity and justice explicitly in their work; these developments will likely 
open new markets, which will ultimately benefit investors as well.

Regulators around the world have begun to take some responsibility for 
AI. In the United States, the Biden administration’s recent Executive Order 
aims to provide guidance on responsible use to the users of algorithms 
across multiple sectors, including housing, criminal justice, and benefits 
programs with guidance on responsible use.72 It is also developing systems 
to evaluate AI safety including requiring developers to disclose the results of 
their “red team” tests. But this is not enough and is likely to focus regulators 
on the technical dimensions of the systems.73 We suggest that regulators 
consider more comprehensive impact assessments. This would require not 
only technical investigation of the datasets and algorithms but also the con-
sequences when the technology is deployed in society. In other words, regu-
lators will have to move beyond technical evaluation, which will require them 
to incorporate new types of expertise and evaluation processes.

As innovators, customers, regulators, and funders take on these new re-
sponsibilities, it will place new burdens on already marginalized communi-
ties. Their inclusion is crucial to achieve equity and justice, but it is also risky. 
They may be overwhelmed by requests, tokenized, or provided insufficient 
compensation for their participation. They may also simply be wary of being 
ignored or abused, given the history of their participation in innovation. 
They must always have the agency to say no, and the innovation ecosystem 
must accept this. When they choose to participate, their knowledge must be 
valued and compensated fairly. This is the only way to build trust and ulti-
mately alleviate structural inequities in AI and innovation more generally.
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CHAPTER 8

Scientific Progress in Artificial Intelligence: 

History, Status, and Futures

Eric Horvitz and Tom M. Mitchell

Introduction and Background

Artificial Intelligence (AI) refers to a field of endeavor as well as a constel-
lation of technologies. The Association for the Advancement of AI (AAAI) 
defines the field as pursuing “the scientific understanding of the mecha-
nisms underlying thought and intelligent behavior and their embodiment 
in machines.” AI encompasses the development of methods for learning 
from data, representing knowledge, and performing reasoning aimed at 
building computer systems capable of performing tasks that typically have 
required human intelligence. Core capabilities covered in AI research in-
clude methods for learning, reasoning, problem-solving, planning, language 
understanding, and visual perception. Over the last twenty years, AI re-
search transitioned from a niche scientific endeavor to an impactful set of 
technologies. We provide in this overview chapter a brief history of the evo-
lution of AI as a discipline over nearly seven decades. Then, we review re-
cent advances and directions. This arc through history, present, and the 
expected near future was commissioned to provide a February 2024 snap-
shot of the state of AI in support of a series of meetings on AI and the sci-
ences that was organized by the National Academy of Sciences and the 
Annenberg Trust.
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Birth and Evolution of Scientific Field

The prospect of automating aspects of human thinking via mechanical sys-
tems has been considered for hundreds of years. Modern metaphors and 
framing of thinking as a computational process have roots in the early twen-
tieth century. Key contributions to the perspective of thinking as comput-
ing include the theoretical work of Alan Turing on computability,1 efforts 
by John von Neuman, Turing, and others to construct general-purpose com-
puting systems,2 and work on computational abstractions of neuronal sys-
tems by McCollough and Pitts.3 The 1940s saw the rise of discussions and 
publications viewing the computer as a metaphor for the brain, including 
control-theoretic notions referred to as cybernetics.4

The modern discipline of AI, per the establishment of a long-standing 
set of aspirations, harkens back to a research project proposal for a sum-
mer workshop held at Dartmouth College in 1956.5 The proposal, coau-
thored by John McCarthy, Marvin Minsky, Nathaniel Rochester, and 
Claude Shannon, outlined a new field of studying how machines could be 
programmed to perform “every aspect of learning or any other feature of 
intelligence.” Containing the first use of the phrase artificial intelligence, the 
proposal described goals of finding “how to make machines use language, 
form abstractions and concepts, solve kinds of problems now reserved for 
humans, and improve themselves.” The summer study is considered as the 
formal launch of AI as a distinct field of scientific inquiry, setting the foun-
dation for decades of research in computer science.

The maturation of the AI research program saw the evolution of a set of 
AI subdisciplines with overlapping but distinct research communities, in-
cluding natural language understanding, problem-solving, planning, vision, 
robotics, and machine learning. Research areas and communities also 
formed around distinct foundational approaches to building AI, such as 
logical reasoning and representations, reasoning under uncertainty with 
statistical methods, and the use of neural network models versus high-
level symbols—a domain of research that had been referred to for decades 
as connectionist approaches. Further, advances and questions in AI have 
stimulated efforts in other disciplines, such as cognitive psychology, 
where cognitive science refers to a subdiscipline of both AI and cognitive 
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psychology that centers on taking inspiration from studies, data, and 
questions about human cognition to build systems that can perform auto-
mated learning and reasoning, and on using computational approaches to 
modeling and probing human psychological processes.6

Representations and Reasoning Mechanisms

Scientific studies of AI are best understood in terms of the technical evolu-
tion of different approaches to representing and reasoning with data and 
knowledge. In the early days of the field, representations and reasoning 
methods included the use of neural networks, early-on referred to as per-
ceptrons in work on learning to recognize visual patterns,7 and symbolic 
logic applied in both specific instances and in attempts to build general ar-
chitectures for problem-solving.8 Symbolic representations dominated the 
first several decades of AI research with efforts in statistical methods, in-
cluding neural networks, continuing but largely taking a backstage posi-
tion. Work in logic-based systems included rule-based expert systems that 
came to focus of attention in the 1970s and 1980s. These systems were aimed 
at capturing specialist knowledge in sets of compact logical rules (e.g., if-
then rules) that would be used to compose chains of inferences within an 
architecture referred to as a production system.9

In a paradigm shift in the mid-1980s, attention began to shift from logic-
based methods to statistical approaches for handling uncertainties associ-
ated with the complexity of real-world problems, such as applications in 
medical diagnosis and decision support. Representation and reasoning ma-
chinery were developed for harnessing probability theory and decision 
theory,10 including Bayesian networks11 and, more generally, probabilistic 
graphical models.12 Systems were developed using these probabilistic repre
sentations for making inferences, such as inferring medical diagnoses from 
information about a patient’s illness, sets of symptoms, and lab results. In 
some systems, the collection of additional information to help refine con-
clusions or diagnoses was guided by computing the expected value of infor-
mation of additional observations, tests, or data.13 In addition, AI research 
scientists began to incorporate and extend techniques developed in the 
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related disciplines of Operations Research, such as Markov decision pro
cesses to support sequential decisions.14

Despite the rise and fall of excitement in different methods, efforts have 
continued within and across multiple fundamental representation and rea-
soning methods. For example, today’s successes and focus of attention on 
large-scale neural networks extends in a recognizable line from the nascent 
work in the early 1960s on perceptrons to the most recent developments with 
methods and systems based on neural networks. Today, studies of symbolic 
reasoning methods continue, including on mechanisms for integrating 
symbolic reasoning with neural models to bolster their abilities to perform 
logic and more general mathematics.15

Machine Learning: Foundation of Today’s AI

Machine learning involves algorithms that enable computers to automati-
cally improve their performance at some task through experience. Often 
that experience takes the form of a large dataset (e.g., in systems that learn 
to classify which new credit card transactions are likely to be legitimate ver-
sus fraudulent) by training on large historical datasets of transactions 
where the correct classification is known in retrospect. In other cases, train-
ing experience may involve active experimentation, as in AI systems that 
learn to play games by using their evolving current best strategy to play 
against itself, to collect data on which game moves produce a win. Break-
throughs in AI over the last fifteen years are largely attributable to advances 
in machine learning. Today, machine learning is viewed as foundational to 
the field as AI moves into the future.

Beyond the aforementioned early research with perceptrons, today’s sci-
entific studies of machine learning extend back to numerous early efforts 
with learning from data or experience. Such efforts include game-playing 
systems in chess and checkers and research efforts that laid out surprisingly 
modern sets of concepts, flows, and architectures for machine learning.16 
For example, research on the Pandemonium system by Oliver Selfridge 
called out principles of salient feature discovery and the use of multiple lev-
els of representation.17
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Machine learning research accelerated in the late-1990s. During that 
time, algorithmic advances, construction of prototypes, and undertaking 
of empirical studies were catalyzed by the fast-paced rise in computing 
power and data storage capabilities, along with the explosion in the quan-
tity of online data available for research and development. In the mid-1990s, 
large amounts of data started to become available via precipitous drops in 
cost of storage, new data capture technologies, and the massive quantity of 
content and behavioral data coming with the growth of the web.

A tapestry of machine learning methods has been developed over the 
last thirty years, many extending methods in traditional statistical analy-
ses to handling datasets with larger numbers of variables and cases and fre-
quently aimed at solving aspirational goals of AI. Enabling advances 
include methods developed in the late 1980s and early 1990s for directly 
learning probabilistic graphical models from data18 and for enhancing the 
efficiency and capabilities of neural network constructions.19

Particularly important to where we are today with the science of AI—
and powering the fast-paced progress in research and development—are sci-
entific advances with harnessing multilayered neural networks that came 
to be referred to as a methodology named deep learning. Advances in deep 
learning have propelled AI to unprecedented levels of capabilities and util-
ity. Innovations, stemming back decades, include the method of back-
propagation for tuning multilayered neural networks with data20 and 
convolution,21 an approach to pooling complex signals into higher-level 
abstractions.

Discriminative and Generative Models

Machine learning methods can be broadly divided into two main capabili-
ties, discriminative AI and generative models, each with distinct objectives 
and application categories. Discriminative models take as input the descrip-
tion of some item and outputs a label, or classification, of the item. For 
example, in the case of a junk email filter, a discriminative model learns 
to label each input email as either spam or non-spam by analyzing fea-
tures derived from the email. These discriminative models directly use 
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the features of the input data to make predictions or classifications, focus-
ing on the relationship between the input data and its corresponding labels.

Discriminative models span classic statistical models of logistic regres-
sion, algorithms for learning classifiers from tabular data, and deep learn-
ing for diagnosis and classification. Examples of discriminative models 
include leveraging labeled data drawn from electronic health record systems 
to predict readmission,22 sepsis,23 and the onset of infection24 in hospital-
ized patients.

Generative models have been front and center in the recent excitement 
about AI and its applications. Such models replicate the process by which 
data is generated. By learning the probability distribution of output features 
given input features, generative models can create and output new data in-
stances that resemble the training data (in contrast to the labels output by 
discriminative models). Multiple methods have been used in generative 
AI, including techniques named generative adversarial networks (GANs), 
variational autoencoders (VAEs), diffusion modeling, and more recently, 
transformers that yield exciting capabilities of generative AI models. Gen-
erative models trained on images are now being used to generate novel 
imagery, as has become popularized in the DALL-E and Midjourney ap-
plications. Beyond images, generative methods are being used in a wide 
range of applications, including the structure and design of protein se-
quences and the performing of scientific simulations.

Supervised, Unsupervised, and Self-Supervised Learning

The training procedures by which models are constructed in machine learn-
ing can be broadly categorized into supervised, unsupervised, and self-
supervised learning. Supervised learning relies on labeled datasets. The use 
of such curated data has been the basis of significant advancements in ar-
eas like medical diagnosis, image analysis, and speech recognition. Unsu-
pervised learning refers to methods that find patterns in data without explicit 
labeling. Traditional variants of these methods include clustering and 
anomaly detection, which have been particularly useful in exploratory data 
analysis.
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Over the last decade, a special form of unsupervised learning,25 named 
self-supervised learning, has become very important. Self-supervision is a 
simple yet powerful idea that has enabled AI systems to learn from vast un-
labeled datasets, such as massive corpora, crawled from across the web. 
One approach to self-supervision is to generate labels automatically by a “fill 
in the blanks” process of hiding words in text or other types of tokens in 
datasets and then trying to predict the hidden information. As an exam-
ple, a model might predict the next word in a sentence or the next frame in 
a video sequence based on previous words or frames.

Self-supervised learning represents a significant shift in machine learn-
ing, moving away from heavy reliance on human-labeled data. This para-
digm is unlocking new possibilities across various fields, enabling models 
to learn from vast untapped datasets and driving innovation in areas where 
labeled data is scarce or expensive to obtain.

Inflection Point for AI: Deep Learning

We are now experiencing an inflection in AI with an acceleration in the rate 
of innovation. The acceleration is largely attributable to advances in research 
and development with deep neural networks (DNNs) over the last decade.

Excitement about the potential of DNNs was sparked by surprising 
results in speech recognition, natural language processing, and machine 
vision. In 2009, DNN methods surprised the community with an unexpected 
reduction in word error recognition rates challenging conversational speech 
recognition tasks, including one named Switchboard.26 Progress on the 
Switchboard benchmark had essentially plateaued for over a decade when 
progress was made with a DNN approach. Shortly after these gains in speech 
recognition, another DNN model named AlexNet was developed and dem-
onstrated to perform with surprising capability on an object recognition 
challenge dataset named ImageNet.27

Since that time, research and applications with DNNs have exploded 
with new challenge problems and applications. Over the last five years, neu-
ral models have been used in multiple applications, including scene recog-
nition systems used in semiautonomous driving. In another domain, DNNs 
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have been demonstrated to perform at expert levels with interpreting med-
ical imagery. For example, DNNs have been shown to have the capability 
to provide expert-level classifications, such as the diagnosis of dermatologi-
cal disorders from images of skin28 and diagnoses from radiological films 
(Figure 8.1).29

Sets of evaluation benchmarks have been defined in the language and 
vision areas, such as the General Language Understanding Evaluation 
(GLUE), a benchmark formulated to measure the performance of models 
with language understanding across a range of natural language processing 
tasks.30 In stunning advances over a decade, AI systems have reached par-
ity with humans on numerous of the defined challenge problems, as high-
lighted in Figure 8.2. Details of the progress on the capabilities of AI systems 
has been captured in the recurrent reports of the AI Index, an annual study 
of trends in AI hosted at Stanford University.31

Key Concepts and Research Directions

Several key directions have come to the fore as important developments, 
requirements, and directions in work on DNNs, including interest in 

Figure 8.1. Visualization generated by CheXNet model, highlighting a region in a 
radiological image of the thorax, where the system recognizes right pleural 
diffusion. Pranav Rajpurkar et al., “CheXNet: Radiologist-Level Pneumonia 
Detection on Chest X-Rays with Deep Learning” arXiv, December 25, 2017, 
https://doi​.org​/10​.48550​/arXiv​.1711​.05225.

https://doi.org/10.48550/arXiv.1711.05225
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automated ways to learn rich representations rather than curate them with 
expert guidance; efforts on robustness; the weaving together of multi-
modal datasets; and the critical value of hardware, innovative algorithms, 
and programming platforms for research and development.

Learning representations. Early supervised machine learning required the 
identification of handcrafted salient observations or features of the input 
and based its predictions on those handcrafted features. Researchers have 
explored how deep learning can identify such features automatically or, 
more generally, rich representations directly from fine-grained data, in pro
cesses referred to as representation learning. The automated learning of 
rich features to represent an image, starting with the lowest-level input pixel 
features and becoming progressively more complex and abstract at succes-
sive layers of neural networks has been a celebrated aspect of modern deep 
neural models for vision.

The ability to automatically learn, or discover, candidate features enables 
systems to discover how best to organize the structure of machine learning 
problems, often yielding more accurate and robust performance on com-
plex tasks than human-defined attributes, albeit at the cost of increased data 
requirements. Neural models leveraging such representation learning have 
been developed for natural language processing, computer vision, speech 
recognition, and health care.
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Figure 8.2. AI at an inflection. Deep neural networks have fueled advances in 
capabilities on benchmarks designed as top challenges for AI systems. This figure 
shows competencies of AI models where human parity on the challenge problems 
was reached on seven benchmarks.



156	 Chapter 8

Robustness and generalization. Efforts in the field of DNNs have increas-
ingly focused on achieving robustness and generalization to ensure accu-
rate performance in varying real-world environments that can be assumed 
to require robust capabilities, for example, accurate diagnoses, classifica-
tions, and predictions on new, previously unseen data, that is not contained 
in training datasets. Efforts in this realm push DNN training procedures 
to seek universal patterns from their training data so as to reduce their be-
ing overfit to training data and to be more adaptable to diverse real-world 
scenarios.

Hybrid strategies. Successes have been found with combining DNNs with 
other computational methods such as coupling the neural models with sci-
entific simulations, integrating the methods with Markov decision processes 
(e.g., reinforcement learning), and integrating DNN approaches with sym-
bolic approaches to reasoning. As an example, the AlphaGo systems rely 
on an integration of deep neural models for making predictions with rein-
forcement learning for guiding the choice of actions.32

Multimodal modals. Most DNN efforts have focused on the singular mo-
dalities of language or visual tasks. In the spirit of pursuing more human-
like intelligence, researchers have pursued the development of multimodal 
models that bring together language, imagery, sounds, and other modali-
ties. Multimodal DNNs include early efforts to do image captioning and 
more recent efforts to make inferences about language and images for such 
tasks as writing radiological reports.

Tools, methods, and platforms. With the advent of the importance of DNNs 
and growing focus of attention on using increasingly large datasets, meth-
ods have been pursued for introducing new forms of efficiency via hardware 
and algorithmic innovation, and for developing programming environ-
ments doing exploratory work with architectural designs for neural net-
works. At the hardware level, graphical processing units (GPUs) have 
provided speed-ups via parallel processing of matrix and vector operations 
that are central to deep learning.
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Algorithmically, efforts span methods for introducing new forms of 
speed-ups in distributed computing at the hardware system level as well 
as on higher-level software innovations aimed at speeding-up the core 
back-propagation procedure to identify parameters that specify weights 
of connections in neural models. For example, efforts have focused on 
adaptation of mathematical optimization procedures like stochastic gra-
dient descent.

Programming environments such as TensorFlow and PyTorch were cre-
ated to ease the design and testing of DNNs, providing engineers with 
computing libraries, methods for accelerating GPU computation, and effi-
ciently specifying and revising the structure of neural networks.

Models as platforms. For decades in machine learning, researchers have 
studied methods for adapting models trained on a source task to perform 
well on other domains via processes of fine-tuning the models with special-
ized data. This process, often referred to as transfer learning, leverages the 
knowledge that the model has gained from the initial training to perform 
well on a related, but different, task.33 Large-scale neural models can serve 
as platforms for extending via fine-tuning with specialized datasets drawn 
from target task domains. Given the myriad uses of the large models as 
platforms that can be extended via domain-specific data, they have been 
referred to as foundation models.34 Foundation models can be seen as an 
extension and scaling-up of transfer learning to DNNs that are trained on 
extremely large datasets, often encompassing a wide range of topics, lan-
guages, or modalities. Their versatility lies in the ability of pretrained mod-
els to be fine-tuned with smaller, task-specific datasets, thereby reducing 
the need for training a model from scratch for each new application. This 
approach not only saves significant computational resources but also allows 
for building upon the model’s base capabilities and knowledge. The term 
foundation reflects their role as a fundamental base upon which more spe-
cialized or fine-tuned models can be built, similar to how a foundation sup-
ports a structure. Their general-purpose nature and scalability make them 
akin to a utility or resource that can be tapped into for numerous AI sys-
tems. Fine-tuning pretrained foundation models has become a standard 
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methodology for adding new capabilities, such as adding multimodal 
capabilities to language-only models35 and for extending the power of gen-
eralist models to specialist performance.36

A Second Inflection: Generative AI

The landscape of AI and its influences on the world has now reached a sec-
ond inflection, Generative AI. Generative AI models are rich language and 
multimodal models that are trained to predict sequences of outputs, given 
input sequences or prompts. These generative models generate the output 
sequence one item at a time, at each step considering the newest generated 
item as a new part of the input, as they generate the next item in the sequence. 
Generative AI spans methods that generate natural language, portions of 
computer programs, imagery, combinations of imagery and language, and 
other types of output, such as sequences of amino acids in response to in-
puts about desired structure and function.

Generative AI systems have been largely based on three innovations that 
have been brought together to create powerful generative capabilities: the 
Transformer architecture, machinery for self-supervised training on mas-
sive diverse content, and a special fine-tuning approach called instruction 
tuning.

Architectural Innovation: “Attention Is All You Need”

A seminal paper introduced the Transformer architecture,37 the foundation 
of today’s generative AI. This particular design of DNN delivers surprising 
competencies via a mechanism called attention, which allows neural lan-
guage models to learn to focus on different parts of an input sequence when 
generating each part of the output. In short, transformers learn during self-
supervised training how to weight the importance of different parts of the 
input data. Such a broad ability to learn where to look and what to consider 
has been seen as a pivotal feature for understanding the context and nu-
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ances in language, in distinction to earlier approaches for learning about 
sequences, of only looking adjacently for the context of generation. The 
power of transformers in various applications, including language transla-
tion, text generation, and image processing tasks has led to their broad 
adoption.

The second pivotal development was combining the Transformer ar-
chitecture with self-supervised training from a diverse, web-scale dataset. 
This approach was first demonstrated with the construction of the BERT 
foundation model.38 BERT learned language by predicting parts of text 
that were hidden from it, gaining a broader and more contextual under-
standing of language via broader learning about where to attend. These 
innovations laid the groundwork for the development of follow-on Trans-
former models like the GPT series, LLAMA, and others, each building 
upon and extending the transformative capabilities introduced by their 
predecessors.

Alignment with Human Intent and Interaction

A third innovation for enabling modern generative AI is a mechanism for 
shaping models to follow natural language instructions and to sustain a con-
versation, versus simply generating tokens that are most likely to follow 
the input prompt. This process of learning to respond to the intentions of 
people involves fine-tuning the model on a new dataset composed of vari
ous tasks, each linked with explicit instructions and rating the output. The 
instructions are designed to mimic the way humans would typically instruct 
each other to perform tasks. The dataset is typically initially generated or 
refined by human annotators who craft the instructions and provide exam-
ple outputs or correct responses. To scale instruction tuning, a method 
referred to as reinforcement learning from human feedback (RLHF) is used 
to expand the instruction dataset and provide measures of the quality of 
generated outputs. This method involves training and then using an auto-
mated approach to scale up the shaping of the model’s behavior to ensure a 
wide coverage of task types and linguistic variations.
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Scaling Laws and Emergent Capabilities

A remarkable property of large language models based on the trans-
former architecture is the existence of a strong empirical relationship 
between the accuracy of the trained language model and the size of the 
model (the number of parameters optimized during training), the amount 
of data on which it is trained, and the amount of computation used during 
training. This relationship, known as “scaling laws,” has been empirically 
validated multiple times.39 These scaling laws are important because they 
predict how larger models trained on larger datasets using greater comput-
ing resources yield increased accuracy; if they continue to hold as models 
are further scaled up, then one can expect even greater accuracy. Figure 8.3 
displays a measure of the ability of a learned model to predict next tokens 
(the “Test Loss”), given a sequence of words at focus of attention, as a func-
tion of increases in powers of ten in the compute time, training data, and 
number of parameters of models.

Scaling laws have provided a reliable framework up to now for predicting 
basic performance metrics, such as error rates in next word prediction. 
However, they fall short in anticipating the competencies of models on chal-
lenging tasks, including benchmarks in natural language and problem-
solving. Training large-scale neural models from broad datasets can be 
viewed as a form of multitask learning with new tasks being learned with 
increasing amounts of computation for training and with the size or capacity 
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of models. Task-centric jumps, which have been referred to as the emer-
gence of new capabilities, have been observed in neural language models on 
diverse tasks at different thresholds of model parameters, compute power, 
and training corpus size. Emergent behaviors include the relatively rapid 
increase in performance on benchmarks after reaching particular thresh-
old levels of investments in computation for training, as captured in Fig-
ure 8.4.40 Emergent capabilities include jumps in performance on nuanced 
language understanding benchmarks and with the acquisition of higher-
level abilities, such as “theory of mind”—the ability of AI systems to solve 
challenges with interpreting and predicting the intentions, desires, and be-
liefs of people.41 To date, we have a poor understanding of the basis for 
such jumps in capabilities as a function of model size, extent computation, 
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and training data, and links between the accuracy of next word prediction 
and performance on the more sophisticated benchmarks.

To date, the exact mechanisms and thresholds that trigger emergent ca-
pabilities remain largely unpredictable and are an important research di-
rection. This unpredictability underscores a significant frontier in AI 
research, where the confluence of parameters, computing resources, and 
training data size creates a complex landscape, within which unexpected 
and sophisticated AI capabilities can spontaneously manifest.

Surprising Powers of Abstraction, Generalization, and Composition

The original set of ChatGPT systems, using GPT-3.5, GPT-4, and related 
models have surprised the world with their generalist powers to perform 
abstraction, generalization, and numerous forms of composition. The mod-
els also show broad “polymathic” capabilities, demonstrating the ability to 
weave together concepts and content drawn from multiple disciplines. The 
scientific community does not yet have a good understanding of the emer-
gence of their abilities to perform various kinds of summarization, text gen-
eration, problem-solving, code program generation, and conversational 
dialogue. Multiple projects are underway to probe the powers and failings 
of these models.

Since the release of GPT-4, and related large-scale models such as Claude 
and Gemini, numerous studies and associated papers have probed poten-
tial uses and have provided an array of evaluations. An early survey of ca-
pabilities was undertaken by Bubeck and colleagues,42 spanning a broad set 
of computing problems, specialist challenges, and the handling of needs and 
interpretation of events of daily life. The survey highlighted surprising ca-
pabilities as well as weaknesses and future directions. Weaknesses include 
the tendency of the large models to confabulate with the creation of erro-
neous but persuasive generations and solutions and failures to perform ba-
sic arithmetic operations. Studies have also uncovered potentially 
fundamental challenges with limited abilities to solve complex planning 
problems that have relied on traditional AI problem-solving on searching 
through options with backtracking.43 These challenges have been attributed 



GPT-4

Prompt: Can you write a proof that there are infinitely

many primes, with every line that rhymes?

GPT-4:

Yes, I think I can,

Though it might take a clever plan.

I’ll start by noting Euclid’s proof,

Which shows that primes aren’t just aloof.

Assume we have a finite list,

Of primes, and that none have been missed.

Multiply them all together,

And add one, just to be clever.

The result will be a number,

That has no prime factors, oh wonder!

But every number has a prime,

That divides it, it’s just a matter of time.

So we’ve found a contradiction,

And our finite list needs eviction.

There must be infinitely many primes,

And that’s the end of my rhyming lines.s

Prompt: Draw a unicorn in TiKZ.

GPT-4: [Produces LATEX compiling to

following picture.]

Prompt: Can you generate a pyplot for the following data: x = [1, 3, 5, 6, 8], y1 = [2, 3, 5, 18, 1], y2 = [3, 5, 6, 8, 1], y3 =
[5, 1, 2, 3, 4], y4 = [9, 7, 2, 3, 1]. I want y1, y2 to be in the same plot, but y3 is in another plot next to that plot, y4 is in
below. I want the legend of y1 to be ”bob”, y2 to be ”alice”, y3 to be ”bilbo”, y4 to be ”allie”. I want the x-axis to be
labeled with ”time” and y axis to be labeled with ”money”. I want to add a 10 %-40% random error bar to each curve,
through all times (including non-integers). I want smoothed curves to show the plot, and smoothed error bar. Do not
use linear interpolation, use smooth interpolation! I want to also add some small zig-zag to the smoothed curve to make
it look more real. I want to put a baseline as the mean of each line. I want to put a pie chart below indicating the
fraction of the four people in each time step. I also want an animation to show how the fractions are changing in the
pie chart in **continuous time**. Interpolate the missing fractions! I also want vertical line animation in other three
plots to match the pie chart. I want the fanciest plot. Please add as many fancy things as possible.

Here is a possible code to generate a pyplot for the following data, with some comments to explain the steps:

GPT-4: [We give two snapshots from the animation resulting from the produced code]

Prompt: Suppose g(x) = f−1(x), g(0) = 5, g(4) = 7, g(3) = 2, g(7) = 9, g(9) = 6 what is f(f(f(6)))?

GPT-4: There are different ways to approach this problem, but one possible method is to use the fact that g(x) =

f−1(x) implies that f(g(x)) = x for any x in the domain of g. That is, applying f to both sides of the equation

g(x) = f−1(x) gives f(g(x)) = f(f−1(x)) = x. This means that we can undo the effect of f by applying g, and vice

versa. Using this idea, we can try to find f(6) by looking for the value of x such that g(x) = 6. From the given

information, we see that g(9) = 6, so f(6) = f(g(9)) = 9. Similarly, we can find f(9) by looking for the value of x such

that g(x) = 9. We see that g(7) = 9, so f(9) = f(g(7)) = 7. Finally, we can find f(7) by looking for the value of x such

that g(x) = 7. We see that g(4) = 7, so f(7) = f(g(4)) = 4. Therefore, f(f(f(6))) = f(f(9)) = f(7) = 4.

Figure 8.5. A sample of diverse prompts and output to an early version of GPT-4. 
Sébastien Bubeck et al., “Sparks of Artificial General Intelligence: Early 
Experiments with GPT-4,” arXiv, April 13, 2023, https://doi​.org​/10​.48550​/arXiv​
.2303​.12712.

https://doi.org/10.48550/arXiv.2303.12712
https://doi.org/10.48550/arXiv.2303.12712
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to the sequential generative processes of current models. Exploratory efforts 
have pursued insights about the root cause of failures, such as weaknesses 
models can exhibit with accurately solving constraint satisfaction and 
mathematics problems.44

Tapping Specialist Performance via Steering

For years, specialist performance with large language models has been 
achieved via training with domain-specific datasets, such as with the 
construction of BioBert45 and PubMedBert46 or fine-tuning foundation 

Round 1: A pig and the letter H.
Description: The pig can be lying on its back with its four legs forming the two
vertical bars of the H, and its curly tail forming the horizontal bar.

Round 2: A house and the letter U.
Description: A house with a U shape, where the two vertical lines of the U are the
walls and the horizontal line is the �oor. The roof is a triangle above the U.

Round 3: A chair and the letter K.
Description: The back of the chair can have a K shape, with two vertical lines and
a diagonal line connecting them. The seat of the chair can be a rectangle.

Round 4: A dog and the letter Q.
Description: The dog is sitting with its tail curled around its body, forming a Q
shape. The Q in �lled with orange and has a black outline.

Round 5: A car and the letter E.
Description: The car has an E shape on its front bumper, with the horizontal lines
of the E being lights and the vertical line being the license plate.

You will be given a name of an object (such as Car, Chair, Elephant) and a letter in the alphabet. Your
goal is to �rst produce a 1-line description of how that object can be combined with the letter in an
image (for example, for an elephant and the letter J, the trunk of the elephant can have a J shape, and
for the letter A and a house, the house can have an A shape with the upper triangle of the A being the
roof). Following the short description, please create SVG code to produce this (in the SVG use shapes
like ellipses, triangles etc and polygons but try to defer from using quadratic curves).

Figure 8.6. Prompts and output demonstrating surprising powers of 
“compositionality” demonstrated by an early version of GPT-4. Bubeck et al., 
“Sparks of Artificial General Intelligence.”



	 Scientific Progress in Artificial Intelligence	 165

models with domain-specific data to update the parameters of the general 
models via optimization. In addition to surprising powers of abstraction, 
generalization, and composition, recent studies have demonstrated that 
generalist foundation models can be guided through special prompting 
strategies to perform as top specialists. For example, prompting methods 
can guide GPT-4 to act as a top medical specialist, with record performance 
on the MedQA benchmark of medical challenge problems.47 Innovation 
with prompting shows that generalist models can be steered to perform as 
experts on competency exams in other areas, including electrical engineer-
ing, machine learning, philosophy, accounting, nursing, and psychology.
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Figure 8.7. Prompting strategies can be used to guide generalist models to act as 
specialists. This figure shows comparative analysis of simple versus more 
sophisticated prompting strategies for steering GPT-4 to perform as a specialist 
on competency benchmarks in multiple realms. Harsha Nori et al., “Can 
Generalist Foundation Models Outcompete Special-Purpose Tuning? Case Study 
in Medicine,” arXiv, November 27, 2023, https://doi​.org​/10​.48550​/arXiv​.2311​.16452.

https://doi.org/10.48550/arXiv.2311.16452
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Research Directions on Generative AI

A great many questions have been framed by the successes and failures 
of generative AI models. The current questions and curiosity frame a set of 
research directions and underscore the critical importance of furthering the 
scientific study of the methods and models.

Representation and reasoning. There is evidence that pushing Transform-
ers via intensive optimization to become increasingly better at predicting 
the next tokens in their generations, under bounded computing and repre
sentational resources, induces the models to induce rich world models as 
an ideal form of compression. Although several directions have provided 
insights about the construction of world representations, much remains un-
known,48 and this is an open and interesting area of research.

In a related direction of research focused more on the microstructure 
of internal activity within transformers, researchers have begun to study 
the finer details of the activity of the artificial neurons in neural net-
works that form large language models, as well as the associations among 
neurons or “neuronal subcircuits” that are induced during training49 and 
patterns of neuron activation at inference time.50 One hypothesis is that a 
large amount of diverse content forces neural networks to learn generally 
applicable and special-purpose circuits that can support multiple tasks. 
Such investigations occur largely in smaller models under controlled learn-
ing settings. In such work, small models may be promising as more pene-
trable, understandable “drosophila,” with results that are generalizable to 
much larger models, just as smaller animal models are used to do medical 
research aimed at advancing human biology and health care.

Opportunities for more fundamental research include investigations of 
how principles and methods of probability and decision theory might be 
more deeply harnessed in representations and inference methods to 
guide the allocation of computational effort and the selective gathering 
of information in learning and reasoning.51 Another direction is to ad-
dress challenges noted with the ability of generative models to perform 
planning of the form solved by methods developed in the AI and Operations 
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Research communities for formulating multistep plans via exploration with 
search and backtracking.52 We also see opportunity to move beyond 
solving single prompts and problems with relatively fixed models to 
extended presence and situatedness. Directions include exploration of 
methods aimed at continual reasoning about streams of problems over 
time.53 Other opportunities include pursuing understandings and exten-
sions of how the models perform and seeking deeper understandings of 
challenges and opportunities with the physical embodiment of systems, 
where grounding of concepts and implications of action are developed 
with flows of information and learning garnered from immersion in rich, 
realistic environments.54

Memory, learning, and adaptation. Deep neural models do not have the 
ability to quickly learn and adapt as humans do to real-time experiences 
and information. Once they are trained, these models are then applied 
but typically remain fixed, or sometimes they are updated via the tradi-
tionally long cycle times of fine-tuning. Long cycles for collecting data 
and building updated models means that late-breaking scientific ad-
vances, news, and information will be unavailable to large language mod-
els without the use of special machinery to augment inferences. Efforts to 
address these challenges include extending large models with methods 
for search and retrieval of recent information. While these adjuvant tech-
niques are helpful, new methods and machinery that enable faster-paced 
and near real-time memory and learning would be game changing. Op-
portunities include developing and integrating methods for ongoing, 
never-ending learning.55 Extending abilities to remember, learn, and 
adapt would enable models to stay up-to-date and would enable break-
throughs in personalization.

Architectural innovation. The Transformer has been a go-to architecture for 
generative AI. Nonetheless, this architecture and methodology has limi-
tations, such as challenges with handling long-term dependencies in 
sequences. There are opportunities to innovate with new architectures, 
including introducing new mechanisms into Transformers.
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Reliability, calibration, and trustworthiness. As AI systems become more 
integrated into daily life, ensuring their reliability and safety is para-
mount, especially when the methods are applied in high-stakes areas like 
medicine, criminal justice, education, and industrial process control. 
Characterizing and communicating potential errors, including erroneous 
generations and rates of false positives and false negatives in pattern recog-
nition, is critically important in understanding costs of failures. Consider-
ations of types of failures and their rates of occurrence is important in 
ethical deliberations about uses of AI in specific domains and contexts; AI 
capabilities and errors frame cost–benefit considerations and decisions 
that hinge on value considerations.

A weakness of generative AI models is their propensity to generate 
content that is persuasive yet erroneous. A critical research direction is 
to develop methods and machinery for assigning well-calibrated confi-
dences to generations and also to deepen understanding of when halluci-
nating content is expected and desired (e.g., generating fiction) or is a 
concern (e.g., performing medical diagnoses). Directions include developing 
internal machinery, fine-tuning, experimenting with new forms of prompt-
ing, and calling external tools, such as databases and search engines that 
perform traditional information retrieval for providing verification and con-
straints. Recent work has explored careful curation of high-quality datasets, 
including using large-scale models to generate high-quality data to boost 
the efficiency of learning and accuracy of inferences.56

Some studies have verified good calibration of confidences in specific 
settings. For example, Figure 8.8 shows good calibration of the confidence 
of GPT-4 about its answers to multiple choice challenges on competency ex-
ams in medicine.

Power of small models. While scaling laws, confirmed by empirical studies 
and theoretical results,57 suggest that large scale is need for top performance, 
recent work has demonstrated remarkable power with smaller models, 
some built from high-quality datasets. In recent work, large language 
models are used to supply training data to build more compact models that 
show strong performance.58 Research is needed to better understand how 
one can achieve strong capabilities with smaller datasets and computational 
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resources, including questions about whether such model construction de-
pends in some way on the poorly understood special properties of data 
generated by the larger models.

Grappling with opacity and complexity. Large-scale neural models are dif-
ficult to understand, potentially hindering scientific progress dependent on 
insights about the induction of neural circuits and larger representations. 
New tools are needed to better understand representations and inference 
in large-scale models. There is a growing similarity of the “black box” chal-
lenges of large-scale neural models and the difficulties of probing the op-
eration of biological nervous systems with fine-grained unit recordings and 
coarse-grained fMRI and related studies. There is a potential convergence 
of methods and analytical tools between these fields.

Mechanisms and designs for human–AI collaboration. There are great op-
portunities to extend prior work on human–AI collaboration.59 Although 
generative AI models are trained to engage in conversational dialogue, there 
is a large space of possibilities to design interaction strategies that empha-
size the primacy of human agency in problem-solving and that introduce 
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Figure 8.8. Calibration of confidence of GPT-4’s answers in response to challenge 
problems drawn from medical competency exams. Harsha Nori et al., 
“Capabilities of GPT-4 on Medical Challenge Problems,” arXiv, April 12, 2023, 
https://doi​.org​/10​.48550​/arXiv​.2303​.13375.
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new styles of human–AI interaction that enable AI systems to complement 
human decision-making.60 Related goals include developing better ways for 
generative AI systems to share the rationale for their generations and 
recommendations.

Engineering Trends with Generative AI

Although it is impossible to predict the future, especially in an area as dy-
namic as generative AI, it is nevertheless useful to examine emerging trends 
in the technology that may shape the future of the technology and its ap-
plications. In this section we consider several trends that have emerged after 
the November 2022 introduction of ChatGPT and their potential to change 
the future of generative AI.

Multimodal generative AI models. Whereas initial LLM models were trained 
only on text data, one recent trend is toward training models on multi-
modal data, such as text, image, video, and sound data. For example, Google 
recently released a model that it calls Gemini, trained “from the bottom up” 
on such multimodal data. In October 2023, OpenAI made available a ver-
sion of its GPT-4 system, GPT-4V, which can accept image and text data as 
input (although its output is still text only). Figure 8.9 shows a typical inter-
action with GPT-4V, in which it is able to interpret the content of an up-
loaded image and reason about how to stack the items in a stable fashion.

The significance of this trend toward multimodal models is that such 
models hold the potential to capture significantly more commonsense 
knowledge about the physical world—knowledge that cannot be easily cap-
tured in text alone. If successful, this trend could lead to significant new 
applications, for example, systems that observe and guide people step-by-
step as they cook a particular recipe for dinner or as you assemble a new 
piece of furniture. One interesting question is whether successful develop-
ment of such multimodal models might cause a rapid burst of new progress 
in robotics, given that much of what limits robotic systems today is their 
poor ability to interpret and reason about physics of diverse objects and 
environments.
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Power of synthetic data. Generative models and more traditional simulation 
methods are being used to generate large quantities of training data that 
are being used successfully to build and extend neural models. Datasets be-
ing generated and harnessed includes visual datasets and focused, high-
quality distillations of specific types of output, such as reasoning strategies61 
and domain-specific data.62

Incorporating software plugins. LLM’s like GPT-4 exhibit many impressive 
abilities, they also have many limitations and shortcomings. For example, 
today’s LLM’s cannot reliably perform arithmetic with large numbers (e.g., 
multiply 483 times 9,328) and can hallucinate incorrect answers to factual 
questions. Model plugins consist of traditional software (e.g., a calcula-
tor, a database of factual information) that can be called as subroutines by 
LLMs. Providing LLMs with plugins allows them to overcome numerous 
limitations and to take advantage of the vast store of software developed by 
many groups over multiple decades of effort. For example, as of Novem-
ber 2023, ChatGPT had access to approximately 1,000 plugins—from cal-
culators, to web search engines, to restaurant reservation apps—which 

Figure 8.9. An interaction with GPT-4V, which accepts image as well as text inputs. 
Here the input image on the left shows four items on a desktop. The input request 
to GPT-4V is “How can I stack these four objects in a stable vertical stack?” When 
the output answer from GPT-4V (shown in the middle) is followed, it produces the 
vertical stack shown on the right. Created by Tom Mitchell using GPT-V website.
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significantly extend its capabilities beyond those provided by its trained 
neural network (Figure 8.10).

The model decides whether and when to invoke any given plugin, de-
pending on the prompt it is responding to, but at present most generative 
AI models limit the number of plugins to be considered in any given con-
versation. For example, ChatGPT requires users to preselect at most a hand-
ful of its available plugins for any given conversation. It remains to be seen 
how large a set of plugins a model will be able to automatically consider in-
voking. However, giving models access to the vast store of software devel-
oped across the computer industry will be a goal for future systems. One 
question raised by the rise of plugins is whether generative AI models will 
become user interfaces of choice to many software packages that currently 
have their own idiosyncratic interfaces. Will future users prefer to interact 
in natural language conversation instead of learning the specialized inter-
face for each software application? Plugins are extensions that allow LLMs 
to impact the world beyond conversations, such as researching.

Beyond such tasks as arithmetic calculation and information retrieval, 
plugins can enable LLMs to perform myriad functions, including executing 
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Figure 8.10. Small sample from approximately a thousand plugins accessible to 
GPT. From the OpenAI website.



	 Scientific Progress in Artificial Intelligence	 173

actions in the open world, such as making purchases, sending messages, 
and controlling physical systems. While such integration with broader 
software and systems can provide new functionalities and services, the 
new powers also pose risks to safety and security and must be handled 
with care.

Multifunctional interactive workspaces. In a direction of innovation related 
to plugins, we see the rise of integrated interactive experiences that promote 
human–AI collaboration by enabling users and AI components to work 
together in a step-by-step manner on problem-solving, where multiple 
tools, data analysis abilities, and code creation are made available in a 
collaborative approach to solving problems and subproblems. A portion of 
a sample session of such a multifunctional interactive workspace provided 
by OpenAI named Advanced Data Analysis is displayed in Figure 8.11.

I’d like to better understand this data about global warming. Can  
you show me the changes in the average temperature changes 50 
years from now—and what parts of the earth will be most affected?

Certainly! Let’s start by examining the contents of the �le you’ve 
uploaded. I'll load the data and provide a brief summary to 
understand its structure and contents.

I’m interested in the changes in the average temperatures for the 
summers in the northern hemisphere based in a starting point of 
today. I’d like to see a map colored by where the changes are the 
greatest. How about making those areas redder appearing.

Finished working Show work

ClimatelmpactLab_Global Data_20Marc...
Spreadsheet

Understood. Let’s break this down step by step:

1. We’ll load the data for average temperatures for June/July/August
      (“tas_JJA_sspX-Y” sheets) from the �le.

2. We’ll calculate the difference between the average temperatures 
     50 years from now and the current temperatures.

3. We’ll visualize the changes on a map, coloring the regions where 
     the changes are the greatest in redder shades.

Projected Change in Summer Temperatures (2040-2059 vs 1985-2005 SSP2-45 Scenario
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Figure 8.11. Advanced Data Analysis provided by OpenAI, a multifunctional 
interaction workspace that enables databases and papers to be loaded for 
analysis, and provides multiple step analyses, introducing tools as needed, 
including writing of code and provision of visualizations, and with ongoing 
sharing of plans and steps with users. Created by Eric Horvitz using OpenAI 
Advanced Data Analysis, November 2023.
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Software development environments for programming with AI models. In 
contrast to using tools that enable generative AI models to call other soft-
ware as subroutines, this trend supports the development of new software 
systems that instead call generative AI as subroutines. Frameworks such as 
the open-source LangChain, Microsoft’s Semantic Kernel, and AutoGen 
have emerged to support software developers in building systems that call 
multiple instances of a generative model.63 These frameworks make it eas-
ier to build software systems that capture the benefits of LLMs (e.g., to in-
teract in natural language, and to perform certain types of commonsense 
reasoning) while also incorporating standard programming and capabili-
ties missing from generative AI, such as long-term memory and database 
access. One aspect of generative AI that makes this especially interesting is 
the ease with which one can “program” or “instruct” an instance of a gen-
erative AI model on how to behave. For example, Figure 8.12 shows the text 
used to instruct, or program, an instance of GPT-4 to perform the role of 

You are an enthusiastic 18-year-old student who is trying to learn. You need the user
(who is a teacher) to slowly teach you all topics in the material.  You have access to a
list of topics, but not to the material itself.  You must learn one topic at a time.
This is the list of topics you found from the internet that you need the user to slowly
teach you (by order):  + {tutoring-script}

You need to learn very little at a time.  Ask the user (who is the teacher) to teach you
the material, little by little.  If the teacher gives the answer, you must (a) show
appreciation and understanding; (b) insert [SMILE]; and then (c) ask a follow up
question if you need more information about the current topic or ask a question about
the next topic.  Do not move on the next question before getting an answer for the 
current question.  If the teacher doesn’t know something, tell the teacher you will be
thrilled if the teacher can check it and get back to you. When all the topics are 
covered, thank the teacher, say I’ve asked all the questions.

1. Instructions to GPT-4 to de�ne StudentBot (Ruf�e):

Figure 8.12. Natural language instructions used to “program” an instance of 
GPT-4 to play the role of an artificial student, as part of a larger online 
educational software, in which humans learn by teaching this artificial 
studentbot (implemented by GPT-4), with the occasional assistance of an 
artificial ProfessorBot (implemented by a second instance of GPT-4). Robin 
Schmucker et al., “NeurIPS Paper 38: Ruffle&Riley: Towards the Automated 
Induction of Conversational Tutoring Systems,” 2023, https://neurips​.cc​/virtual​
/2023​/79097.

https://neurips.cc/virtual/2023/79097
https://neurips.cc/virtual/2023/79097
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an artificial student, to be taught by a human teacher within an online ed-
ucation application. The programming of the LLM is done here using only 
natural language instruction rather than a programming language.

One interesting question about the future which is raised by this trend 
is whether we are beginning to see the emergence of a new paradigm for 
software development which, unlike previous paradigms that relied exclu-
sively on formal programming languages to instruct the machine, will in 
the future seamlessly blend natural language instructions with formal lan-
guages (Figure 8.13).

Personalized generative AI systems. Generative AI models such as OpenAI’s 
GPT-4 and Google’s Gemini are very costly to develop and are so large (con-
taining hundreds of billions of learned parameters) that they are not 
downloaded, but only used remotely over the web. As a result, it may seem 
unlikely that these models could be personalized to each of billions of people 
on the planet. Nevertheless, we are already beginning to see a trend toward 
personalized LLMs. For example, ChatGPT allows users to provide a natural 
language description of themselves and their interests which it can use to 

Conversable agent

Agent Customization Flexible Conversation Patterns

Multi-Agent Conversations

Joint chat Hierarchical chat

Figure 8.13. AutoGen orchestration framework for generative AI models allows 
the efficient specification of roles and flows of generations. Qingyun Wu, Gagan 
Bansal, Jieyu Zhang, Yiran Wu, et al., “AutoGen: Enabling Next-Gen LLM 
Applications via Multi-Agent Conversation,” paper presented at the Conference 
on Language Modeling, Philadelphia, PA, October 7–9, 2024.
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modulate conversations with that user (e.g., to customize to their educa-
tional background). Furthermore, Google has released an experimental ver-
sion of its conversational assistant Bard that enables users to give it access 
to their entire Gmail collection as well as their online Google Docs, then 
discuss the content of these. For example, Figure 8.14 shows a typical inter-
action with this experimental version of Bard. Beyond this, Microsoft has 
also released a new version of their Office software suite in which LLMs are 
integrated with systems such as Word, PowerPoint, and Excel. Both Apple 
and Google have announced plans to release versions of LLMs small enough 
to run on their respective mobile phones, opening the possibility of highly 
personalized LLM-based agents that preserve privacy by operating solely 
on personal devices.

summarize my recent emails regarding my upcoming presentation to the USPTO.

View other drafts

Google Workspace

Items considered for this response Learn moreGmail

USPTO - Videos, presentations and research paper ... Ram Konduru

You received an email from Ram Konduru regarding your upcoming presentation
to the USPTO. He shared the link to the Google Drive where all the content for the
lecture series is stored, and asked you to con�rm your lecture date by entering
your initials in column F of the scheduling spreadsheet. He also mentioned that all
the lectures to date have been very well received by the USPTO, and that Tom
suggested that he share the past lecture videos and presentations with all the
faculty involved in the lecture series.

Figure 8.14. A conversation with Google’s Bard about the content of the user’s 
Gmail and Google Docs. Created by Tom Mitchell using the Google Bard web 
interface.
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The significance of this trend is that it suggests that the future will see 
an increasing ability of generative AI systems to interface with personal 
data, and data of corporations, in ways that make them tremendously more 
useful and knowledgeable about the problems of interest to their users. Cus-
tomization to specific users, corporations, and problem settings is likely to 
be supported by a combination of model fine-tuning, providing access to 
relevant user data, and direct natural language instructions defining roles 
for the agent.

Open-source models. One trend in generative AI might be summarized as 
“bigger is better.” Between 2018 and 2023 the sequence of top state-of-the-
art generative AI models followed a clear scaling law: models with more 
parameters, trained on larger datasets, produced significantly improved ca-
pabilities (Figure 8.15). This led to models with costs of over $100 million to 
train and containing so many parameters that they would not fit on most 
computers. Given this trend, one might expect a future in which only a few 
dozen well-resourced companies and governments could afford to develop 
the next generation of models, and where the rest of us would only be able 
to access those models over the cloud. As mentioned earlier in the discus-
sion of research directions, a number of new models being developed and 
fielded rely on many fewer parameters—few enough that the models can 
be downloaded and trained or fine-tuned on much smaller computers. Al-
though these smaller models do not match the competence of the very best 
models, they exhibit surprisingly good competence, especially when trained 
for specific domains such as medicine or finance, and when trained using 
carefully selected training data such as textbooks. These small models make 
it feasible for researchers and developers across the world to build and work 
with generative AI, rather than just the employees of a handful of organi-
zations; that is, they make open-source shared development by many coop-
erating developers possible.

Of all the trends mentioned here, this trend toward smaller, open-source, 
widely shared models may be the most consequential, as it will strongly in-
fluence both the number of researchers and developers who participate 
in advancing the technology, and it will strongly influence the ability of 
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governments to control and regulate uses of the technology and the 
“guardrails” placed on it.

Consider first the impact of the open-source trend on the number of 
technical experts who can work to advance the technology. Because cur-
rent state-of-the-art models such as OpenAI’s GPT-4 and Google’s Gemini 
are so large and so expensive to train, they can only be accessed over the 
cloud, and the next generation of these models can only be developed by 
organizations such as OpenAI, Google, Microsoft, Amazon, and other 
organizations who have computational infrastructures that cost hundreds 
of millions of dollars. Such organizations may have many thousands of em-
ployees, but this number is dwarfed by the number of researchers and de-
velopers outside such large organizations (e.g., university faculty and 
students in computer science, and employees at small startup companies). 
Because the rate of research progress is often strongly dependent on the 
number of researchers working on a problem, a successful and vibrant open-
source movement is likely to result in more rapid advances and in the 
democratization of application development. One concern of the US gov-
ernment as it seeks policies that enable the United States to lead in this tech-
nology is the potential loss of university research as a key driver of AI 
advances. For many decades, US universities drove the key advances in AI. 
However, in recent years the greatest AI breakthroughs have instead come 
from industry, because universities lack the high-cost computational 

So far, bigger models trained on larger data sets produce best
results

But models orders of magnitude smaller and cheaper are
surprisingly good
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Figure 8.15. Sizes and year of release of various generative AI models. Created by 
Tom Mitchell.
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resources necessary to train and experiment with the largest, most ad-
vanced AI foundational models. One proposal under consideration is to 
fund a National AI Research Resource (NAIRR) to provide computational 
resources to keep US universities a vital part of research at the frontier of 
AI. A pilot NAIRR effort is being organized by the National Science Foun-
dation and is planned for launch in mid-2024.

The success or failure of smaller models and therefore of the related 
open-source effort in generative AI will also have a strong impact on whether 
and how governments can track and regulate AI technology. Large corpo-
rations that work in this area are already cooperating with various govern-
ments to create frameworks, best practices, and regulations to minimize the 
risk of AI being used for nefarious purposes, as well as risks of adverse un-
intended consequences. If only very large AI systems dominate in the 
future, then the open-source movement is likely to be small or nonexistent, 
and governments can continue to work with large corporations and can ef-
fectively enforce any government regulations. However, if small AI models 
and the corresponding open-source movement succeed, then it will be very 
difficult, perhaps impossible, for governments to know which organizations 
and which individuals have highly capable AI models and what they are us-
ing them for. In short, if small AI models become highly capable and easily 
copied and ported, then they will become very difficult to regulate.

Key Opportunities with Applications

Discriminative and generative AI models have great applications in daily 
life and in specific domains and specialties. Major areas of future impact 
include the biological and physical sciences, health and well-being, and 
education.

Biosciences. AI’s impact is expanding rapidly in the biosciences. AI meth-
ods promise to provide fast-paced leaps in understanding complex biologi-
cal processes and designing new drugs and therapies. Neural modeling 
pipelines, including AlphaFold64 and RoseTTAfold,65 are providing game-
changing capabilities to biologists. Recent work on harnessing these and 
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other neural modeling methods are putting tools in the hands of biologists 
for estimating protein structure and better understanding protein function 
and interactions. As an example, AI tools were recently used to perform a 
cross-proteome, large-scale screening of potential protein–protein interac-
tions in yeast cells (Figure 8.16). The screening identified previously un-
known protein interactions in these eukaryotic cells—cells that are closely 
related to those that we are composed of.66 Many of the interactions could 
be mapped to pathways by biologists. However, the roles of several predicted 
interactions remain mysteries, framing new questions in cell biology. Ad-
vances with predicting protein–protein interactions offer a multitude of 
possibilities for harnessing AI advances for understanding and interven-
ing with cellular pathways. Figure 8.17 shows that recently developed diffu-
sion modeling techniques, analogous to AI methods for image generation, 
have been harnessed in protein design.67 Such methods can be harnessed 
for designing new medications, protective binders that block the active site 
of viruses, and synthetic vaccines. Over the next decade and beyond, AI 
could revolutionize personalized medicine, offering tailored treatments 
based on illness specifics and individual genetic profiles, and accelerate the 
pace of biotechnological innovation, possibly leading to solutions for today’s 
incurable diseases.

Health care. To date, AI has been a sleeping giant in health care. In the next 
decade, we may see AI becoming a regular assistant in diagnosis and treat-
ment planning, offering more accurate and faster diagnoses. AI could also 
enhance remote health care and monitoring, making quality health care ac-
cessible in underserved regions. Multiple opportunities for traditional ma-
chine learning exist, as do uses of discriminative and generative neural 
models to assist with diagnoses and predicting outcomes. Work to date has 
demonstrated great possibilities for enhancing the quality of care, includ-
ing raising levels of diagnostic and therapeutic excellence, and reducing 
human errors. Beyond clinical decision support, the capabilities of genera-
tive models to generate and summarize reports can reduce the administra-
tive on physicians providing them with more time for quality patient 
engagement (Figures 8.18 and 8.19).



Figure 8.16. Decoding protein complexes. In work moving beyond structure, 
DNNs have been applied to identify likely protein complexes in eukaryotic cells. 
The complexes have been linked to processes of transcription, translation, DNA 
repair, mitosis and meiosis, metabolism, and protein transport within cells and 
across membranes. The dark blue lines indicate likely points of contact predicted 
between the proteins. The function of some of the identified complexes are 
mysteries. See Ian R Humphreys et al., “Computed Structures of Core Eukaryotic 
Protein Complexes,” Science 374, no. 6573 (December 10, 2021): eabm4805–
eabm4805, https://doi​.org​/10​.1126​/science​.abm4805.

Figure 8.17. Supercharging protein design. Use of diffusion modeling methods to 
design proteins. In this case, a protein is designed with conditioning on a given 
motif. See Joseph L Watson et al., “De Novo Design of Protein Structure and 
Function with RFdiffusion,” Nature 620, no. 7976 (August 2023): 1089–1100, 
https://doi​.org​/10​.1038​/s41586​-023​-06415​-8.

https://doi.org/10.1126/science.abm4805
https://doi.org/10.1038/s41586-023-06415-8


If you survey the literature of what we know, what new studies might be done to make a 
contribution forward in resolving the uncertainties?

Given the current understanding of the pathophysiology of glaucoma, potential areas of 
research to advance knowledge and improve outcomes for patients with glaucoma could 
include the following:

1. Elevated intraocular pressure (IOP): Further studies could investigate the mechanisms 
by which elevated IOP leads to optic nerve damage, and identify more accurate and 
personalized methods for predicting which patients with elevated IOP are at the highest 
risk for developing glaucoma.

2. Vascular dysregulation: Research could focus on gaining a better understanding of the 
role of vascular dysregulation in glaucoma, and identifying new interventions to prevent 
or mitigate optic nerve ischemia and damage.

3. Neurodegeneration: More studies could be done to elucidate the mechanisms 
involved in neurodegeneration in glaucoma, and to identify new neuroprotective 
interventions for the prevention and treatment of glaucoma.

4. Genetic factors: Further research could aim to identify new genetic risk factors for 
glaucoma, and explore how genetic testing and personalized medicine could be used to 
improve the detection, prevention, and treatment of glaucoma.

5. Clinical trials: Large-scale clinical trials could be conducted to compare the 
effectiveness of different interventions for glaucoma, including medications, surgeries, 
and new treatments such as gene therapy and stem cell therapy.

By pursuing these areas of research, it may be possible to advance understanding of the 
pathophysiology of glaucoma, identify new targets for therapies, and improve outcomes 
for patients with glaucoma.

EH

Figure 8.18. Snippet from a medical session with GPT-4, showing diagnosis, 
summarization, review of relevant frontier research, and patient communication. 
Full session available at https://unlocked​.microsoft​.com​/ai​-anthology​/case​
-studies. Created by Eric Horvitz with GPT-4, January 2023; from Eric Horvitz, 
“Case Studies: Sample Sessions with GPT-4 Prior to Public Release,” AI 
Anthology, Microsoft Unlocked (2023), https://unlocked​.microsoft​.com​/ai​
-anthology​/case​-studies​/.

https://unlocked.microsoft.com/ai-anthology/case-studies
https://unlocked.microsoft.com/ai-anthology/case-studies
https://unlocked.microsoft.com/ai-anthology/case-studies/
https://unlocked.microsoft.com/ai-anthology/case-studies/
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Physical sciences. Work is underway on numerous fronts in the physical sci-
ences with uses of generative AI models. A detailed review of recent efforts 
and directions is provided in The Impact of Large Language Models on Sci-
entific Discovery, an AI survey by Microsoft Research AI4Science and Mi-
crosoft Azure Quantum.68 In material science, AI is already accelerating the 
discovery of new materials and understanding complex physical phenom-
ena. Work includes using neural models to provide candidate chemical 
compounds and to speed up analyses of suitability of candidates by pro-
viding efficient approximations of more complex traditional quantum com-
putations. With recent advances in AI-driven simulations and predictive 
modeling, the next decade could see AI systems designing materials with 
tailored properties for specific applications, such as ultra-strong compos-
ites for aerospace or highly efficient conductors for electronics. Directions 
with applications of AI for science include the development of large inte-
grated scientific foundation models that form datasets drawn from multi-
ple scientific domains and at a variety of spatial scales.

Climate and sustainability. AI methods are showing promise with optimi-
zation of renewable energy systems and with important tasks as predicting 

Figure 8.19. Rise of multimodal models. Creating a multimodal medical imaging 
model by fine-tuning a generalist open-source model with millions of aligned 
images and captions accessed from the openly available medical literature. 
Chunyuan Li et al., “LLaVA-Med: Training a Large Language-and-Vision 
Assistant for Biomedicine in One Day,” in Proceedings of the 37th International 
Conference on Neural Information Processing Systems, NIPS ’23 (Red Hook, NY: 
Curran Associates, 2024), 28541–28564.
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climate patterns and responses to alternate interventions. Looking forward, 
AI could be instrumental in helping with the discovery and design of more 
efficient catalysts and overall processes for carbon capture and storage. AI-
driven models could offer more precise predictions of climate change im-
pacts, aiding in more effective policymaking and environmental protection 
measures (Figure 8.20).

Education. GPT-4 is being explored in early deployments, including by 
Khan Academy, but also in educational research. There are great opportu-
nities to harness generative AI systems to act as a personalized tutor, per 
the “theory of mind,” pedagogical skills, and explanatory capabilities dem-
onstrated by the largest models (Figure 8.21).

Engineering brainstorming and design. Generative AI, including problem-
solving, guidance, and visualization of novel designs might provide a trans-
formative toolkit to boost engineers’ creativity and innovation. Generative 
AI models trained to have language, imagery, and multimodal capabilities 
can help scientists to formulate, explore, and visualize complex concepts 
or designs that they might not have considered otherwise. There are op-
portunities for such models to serve as collaborative partners, providing 
instant feedback or making suggestions based on prompts describing goals. 
Figure 8.22 shows an early exploration with the DALL-E2 system of visual-
izations of designs for a combination of solar water heating and power 
generation.

AI, People, and Society: From Technical to Sociotechnical

The capabilities of AI methods are dual use. AI methods can be harnessed 
in sciences, engineering, and in daily life to raise the quality of life and to 
promote human flourishing. They can also be leveraged by malevolent ac-
tors to pursue costly and criminal activities. Beyond explicit pursuits of uses 
of AI in adversarial ways, uses of AI may have inadvertent influences on 
people and society. The intersection of AI with societal aspects encompasses 



Can you compare the strengths and weaknesses with doing what the authors did with 
their atmosphere 3D inversion analysis versus an alternate study with using a Bayesian 
hierarchical model (BHM) for the atmospheric 3D inversion component of the study?

Both approaches have strengths and weaknesses, and the choice of one over the other 
may depend on the speci�c problem, the available data, the computational resources, 
and the scienti�c objectives. Here are some possible comparisons between the two 
approaches:

– The variational Bayesian inversion may be more computationally ef�cient than the 
BHM, especially for high-dimensional problems, as it does not require repeated runs of 
the forward model or the storage of a large number of samples. However, the variational 
Bayesian inversion may also be more sensitive to the choice of the initial guess, the
convergence criteria, and the regularization parameters, and it may not fully explore the

There are different approaches to atmospheric inversion, which is the process of 
estimating sources and sinks of a trace gas (such as methane) from its observed 
concentrations in the atmosphere. One approach is the variational Bayesian inversion, 
which is based on minimizing a cost function that measures the discrepancy between the 
prior estimates of the sources and sinks and the posterior estimates that are consistent 
with the observations, weighted by their respective uncertainties. This approach requires 
an adjoint model that computes the gradient of the cost function and an iterative 
algorithm that �nds the optimal solution. Another approach is the Bayesian hierarchical 
model (BHM), which is based on specifying a probabilistic model that relates the sources 
and sinks to the observations, accounting for the uncertainties in the model parameters, 
the observation errors, and the prior information. This approach requires a Markov chain 
Monte Carlo (MCMC) algorithm that samples from the posterior distribution of the 
sources and sinks given the observations.

nature

Wetland emission and atmospheric sink changes
explain methane growth in 2020

Article | Published: 14 December 2022

Peng, S., Lin, X., Thompson, R.L., et al, Nature 612, 477-482 (2022)

EH

Figure 8.20. Snippet from a session showing analysis of late-breaking scientific 
paper, showing rich dialog on the scientific methods, foundations, and future 
directions. Full session available at https://unlocked​.microsoft​.com​/ai​-anthology​
/case​-studies. Created by Eric Horvitz with GPT-4, January 2023; from Eric 
Horvitz, “Case Studies.”

https://unlocked.microsoft.com/ai-anthology/case-studies
https://unlocked.microsoft.com/ai-anthology/case-studies
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reliability and safety issues, privacy and security trade-offs, and fairness and 
accountability.69 Legal and ethical issues around data provenance, intellec-
tual property, and copyright are increasingly pertinent. AI’s role in mili-
tary applications brings up concerns about competitive landscapes and the 
potential for destabilizing inf luences. Socially, AI risks exacerbating 

The computer is trying to teach a high school student about quantum computing, using 
analogies and trying to teach the basics so they have a true understanding of the main 
concepts. The student already studied the basics of quantum physics but is puzzled 
about quantum computing.

I’d really like to better understand how quantum computers compute and the types of 
problems they can solve.

Quantum computing is a way of using the properties of quantum physics to perform 
calculations that are impossible or very hard for classical computers. Quantum physics is 
the study of the behavior of the smallest particles and waves that make up matter and 
energy, such as electrons, photons, and atoms.

Quantum computers use quantum bits, or qubits, as their basic units of information. 
Unlike classical bits, which can only be either 0 or 1, qubits can be in a superposition of 
both 0 and 1 at the same time. This means that a qubit can store and process more 
information than a classical bit, and that multiple qubits can be entangled, or linked, so 
that their states depend on each other.

I get that but want to develop an intuition about how one can go from that description 
to really understand how an answer would be generated.

One way to think about quantum computing is to imagine that you have a very large 
book with many pages, each containing a possible answer to a problem. A classical

Yes, but how exactly do they compute?

EH

EH

EH

Figure 8.21. Snippet from education session on quantum computing, showing 
rich dialog, signs of pedagogical competence, and responsiveness. Full session 
available at ßß. Created by Eric Horvitz with GPT-4, January 2023; from Eric 
Horvitz, “Case Studies.”
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the digital divide, impacting job markets, and enabling malevolent 
uses like deepfakes and online manipulation. The deeper social, cultural, 
and psychological dimensions—trust, authenticity, diversity, agency, and 
creativity—are also crucial areas for consideration. A great deal of discus-
sion and activities have been framed by the opportunities and concerns 
posed by advances in AI. These include efforts by governments of the 
United States, the United Kingdom, and the European Union to call for 
study and regulation. In October 2023, an extensive US Presidential Exec-
utive Order on Safe, Secure, and Trustworthy Development and Use of Arti-
ficial Intelligence called for study and actions to address the possibilities of 
AI technologies to “exacerbate societal harms such as fraud, discrimina-
tion, bias, and disinformation; displace and disempower workers; stifle 
competition; and pose risks to national security.”70 Directions forward for 
realizing the benefits of AI while minimizing risks will require continuing 
investments in understandings and innovation on the technical, socio-
technical, and regulatory fronts.

Figure 8.22. The powers of composition demonstrated by the multimodal 
DALL-E2 system provide a glimmer into the potential uses of generative AI as a 
design colleague. Created by Eric Horvitz using DALLE-2, April 2022.
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Conclusion

The journey of AI to date has involved decades of innovation with empiri-
cal studies and prototypes, the development of theoretical principles, and 
shifts among paradigms. In our overview, we shared a fast-paced arc through 
the history of AI as a distinct field of scientific inquiry. This journey saw a 
pivotal shift from early symbolic logic to probabilistic models in the mid-
1980s as a response to the complexity of real-world problems. The growth 
and impact of the field over the last 20 years has been based largely on 
advancements in machine learning with efforts in discriminative mod-
els, which excel in pattern recognition and classification, and generative 
models, which replicate and innovate with data generation processes. The 
recent inflections in progress have come with advances in deep learning, 
which have become the foundation of today’s AI applications. The current 
landscape of AI is defined by two significant inflection points: the rise of 
deep learning, and now the advent of generative AI, demonstrating both 
specialist and generalist competencies.

With all the rising capabilities—sprinkled with both systematic and 
poorly understood weaknesses—that we now see, we have little under-
standing of large generative AI models. There are tremendous opportu-
nities ahead for advancing the science of AI. At the same time, we see 
unprecedented possibilities ahead via AI advances for leveraging com-
puting technologies in a multitude of areas, including key domains of the 
biosciences, health care, the physical sciences, education, and climate 
and sustainability.
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CHAPTER 9

Perspectives on AI from Across 

the Disciplines

NAS/NAE/NAM Working Group Members

A uthored by the working group participants who are members of 
the National Academy of Sciences (NAS), the National Academy 
of Engineering (NAE), or the National Academy of Medicine 

(NAS), the perspective pieces included in this chapter responded to the con-
veners’ request to briefly describe how AI had or could transform their 
disciplines. We include an edited digest of the responses they delivered at 
the two Sunnylands convenings. Academy members are listed in alphabeti-
cal order followed by their respective NAS, NAE, or NAM section(s).

—Kathleen Hall Jamieson, William Kearney, and Anne-Marie Mazza

David Baltimore (NAS, NAM)

Microbial Biology  
Biochemistry, Cellular and Developmental Biology, Medical 

Microbiology and Immunology, and Genetics

Biology has been undergoing a continual revolution since I began working 
in biology in 1960. And the depth of that revolution, call it every five years, 
is astounding. The things that we think about today and the things that 
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we do today bear no relation to what we did five years ago, ten years ago, 
20 years ago. We’ve had to adapt to this continuing revolutionary behav
ior because it’s exciting and because each revolution generates a new 
depth of understanding.

Now the latest involves melding AI into what we built over these many 
years, and the results have been astounding. AlphaFold, which allows us to 
predict fairly accurately the structure of proteins from simple sequence, 
something we dreamed of doing, is itself one of these revolutionary mo-
ments. So we in biological research have thought a lot about how you control 
something moving at this extraordinary pace. Most of you will be aware of 
the Asilomar process of many years ago, where we established a procedure 
for taking on a revolutionary methodology that might have downsides as 
well as upsides. That set the stage for the more recent adaptation of genome 
editing into our portfolio of techniques, the potential of changing the in-
heritance of our whole race. I hope that thinking about these precedents 
will be in the agenda of this meeting, and biologists can be a little helpful 
with the experience that we’ve had in thinking about regulatory issues and 
the other meta issues that allow science to move forward.

Vinton G. Cerf (NAS/NAE)

Computer and Information Sciences  
Computer Science and Engineering

In 1943 Warren McCullough and Walter Pitts invented the perceptron. In 
1957, Frank Rosenblatt implemented the concept using a neural network that 
had three layers and was capable of classifying groups of objects that are 
linearly separable (e.g., by drawing straight lines in a two-dimensional 
space). More complex separation functions required more layers, as re-
searchers discovered in subsequent work.

The term artificial intelligence (AI) was coined at a time when computers 
were still relatively new (early 1960s) and had been called “artificial brains” 
by some. There was a kind of hubris in this nomenclature. Researchers be-
gan with heuristic programs that seemed to exhibit intelligent behavior 
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some of the time. A more codified version of AI emerged, called expert 
systems, that used a programming structure based on if-then-else logic. 
For example, “if this symptom is present, then there is x probability of 
some diagnosis, else check for a different symptom.”

In the 1980s, some researchers returned to multilayer neural networks 
to solve more complex classification problems. The primary computations 
required to adjust the weights of each neuron are forms of matrix multipli-
cation. With the repurposing of graphical processing units, whose original 
purpose was fast triangular texture computation, to do fast matrix multi-
plies, neural networks became capable of surprisingly effective applications 
including speech recognition, translation, image classification and, ulti-
mately, text and multimodal synthesis in response to a prompt. At Google, 
even more specialized hardware, called tensor processing units (TPUs), has 
been developed.

This generative form of AI has become topic A in the last few years, lead-
ing to a great deal of hyperbolic speculation about the capability of these 
specialized computing systems we now call large language models (LLMs). 
Some of them can write software. Others can distinguish and classify im-
ages. Others can synthesize voices, videos, and images from text prompts 
with considerable creativity. It is not hard to become excited to see systems 
like ChatGPT producing poetry like this haiku, which resulted from a 
prompt: “write a haiku about a rose in Shakespearean style”:

ChatGPT: In fairest garden, Sweet rose blooms ‘neath summer’s 
gaze, Beauty’s fragrant blush.

This may be compared to one of Shakespeare’s related sonnets written in 
1609:

From fairest creatures we desire increase, That thereby beauty’s 
rose might never die, But as the riper should by time decease, 
His tender heir might bear his memory:

But thou, contracted to thine own bright eyes, Feed’st thy light’s 
flame with self-substantial fuel, Making a famine where 
abundance lies,
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Thyself thy foe, to thy sweet self too cruel:
Thou that art now the world’s fresh ornament, And only herald to 

the gaudy spring,
Within thine own bud buriest thy content,
And tender churl mak’st waste in niggarding: Pity the world, or 

else this glutton be,
To eat the world’s due, by the grave and thee.1

There are many much more compelling examples that can be offered. Some 
of these LLMs can produce software. Others generate text, sound, imagery, 
or video based on text prompts. Others write essays or provide advice in 
response to queries.

One might reasonably wonder, “Why are these artifacts so seemingly 
creative, knowledgeable, and intelligent?” The training of the neural net-
works involves the ingestion of large quantities of text that has been to-
kenized. A token can be a word or a phrase. A high dimensional model is 
created to capture the probability of a word occurring after the input of a 
prompt or a line of text. During the training period, an LLM is formed using 
random weights associated with the neurons of a multilayer neural network. 
The model starts out with a fairly poor representation of the statistical rela-
tionships among the many (sometimes billions) of tokens. The training 
consists of presenting the model with partial sentences, asking the model 
to “fill in the blanks.” In what is called back-propagation, good responses, 
for some value of good, adjust the producing weights accordingly. Bad re-
sponses cause the weights to be adjusted to be less likely to produce the 
undesired response.

A text LLM is essentially a statistical reflection of the text that it was 
trained on. It could be thought of as a compressed representation of the in-
gested text. It should not be surprising that this statistical representation 
produces conceptually coherent output that mimics human discourse and 
even reasoning. After all, the content used to train the model had meaning 
that was expressed more or less coherently. The statistical model of which 
words might reasonably follow preceding words contains some of that 
knowledge. If the source material is grammatically correct and uses a broad 
vocabulary of words, it can mimic human discourse in convincing ways.
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It is precisely because of this convincing mimicry that one is led to imag-
ine that the LLM (or “bot”) is nearly sentient. Of course, it is nothing of the 
sort. It is simply a generative system that is driven in part by the coherent 
expression of fact and belief contained in the training material.

Because of its statistical nature, a generative LLM can also produce 
counterfactual output in response to prompts. The training often lacks any 
indication of context such that text can be generated that draws on words 
occurring in different contexts that, when strung together, produce false as-
sertions. This phenomenon is sometimes referred to as hallucination. We 
are still some distance from understanding how to curb this tendency.

Perhaps even more disturbing is that these generative systems produced 
generally very good quality sentences. These often sound very anthropo-
morphic: “I am just a chatbot.” The self-reference imbues the system with 
the verisimilitude of humanity and self-consciousness. Users of these sys-
tems sometimes see the responses as empathetic and often give them cred-
ibility for social awareness that the LLM does not deserve. Of course it 
sounds humanistic; it was derived from the expression of human discourse 
and writing!

These systems produce the illusion of human discourse and are often 
extremely convincing, even when completely wrong. We are learning to 
use them in myriad ways but should be wary of being misled by the glib 
responses to our prompts. Critical thinking is our friend in the use of these 
artifacts. At some point, perhaps there will also be norms, rules, and even 
regulations to protect users from taking advice that sounds authoritative 
but is dangerously wrong. We have a lot to learn about these complex arti-
facts and meanwhile should be wary of their application for anything that 
might be high risk.

Joseph S. Francisco (NAS)

Chemistry

In the field of chemistry, AI is being increasingly embraced by both pub-
lishers and researchers. Its application has surged significantly in recent 
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years, revolutionizing various aspects of journal operations. AI is now in-
strumental in enhancing manuscript quality by aiding authors in refining 
their work with greater precision. Moreover, AI’s role extends into the pro-
duction process, a development that many, including myself, were previ-
ously unaware of. However, this rapid integration of AI also brings with it 
a few growing concerns.

One major concern is the role of AI in aiding paper mills. AI can help 
paper mills produce papers that evade detection, making it challenging for 
journals to identify submissions originating from paper mills. The papers 
produced by paper mills often lack real data, have manipulated images, and 
have authors without institutional emails or public records, who are hard 
to trace.

AI tools are being used by publishers to detect paper mill submissions 
by reviewing visual content and sub-images to identify discrepancies. Such 
tools can flag duplicated and manipulated images and figures before publi-
cation, enabling publishers to correct unintentional errors or reject manip-
ulated manuscripts. Publishers are actively working to detect these kinds 
of submissions to maintain the integrity of the research they publish in their 
journals.

In chemistry, analytical chemistry and biochemistry lead in integrat-
ing AI into their research compared to other subfields. However, areas like 
organic synthetic chemistry have not yet seen AI’s influence. Despite this, 
the field holds tremendous potential for AI to facilitate the discovery of new 
molecules.

An emerging issue in organic chemistry involves the use of AI to gen-
erate synthetic procedures. The question is whether AI can reliably produce 
procedures to synthesize molecules. Additionally, if a novice chemist fol-
lows an AI-generated procedure without adequate experience, it could lead 
to dangerous situations. To mitigate this risk, we need to ask upfront ques-
tions: Should there be post hoc filtering for the synthesizability of AI-
generated results? If a procedure is generated by AI without validation, who 
is held accountable—the AI, the user, or the journal? This presents signifi-
cant chemical safety issues that have not yet been fully addressed.

AI systems are typically trained on representative datasets, learning 
from these datasets to formulate predictions based on observed patterns or 
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to generate new data. Consequently, AI models require accurate and read-
ily accessible datasets. However, the reliability of the databases used to train 
AI remains a significant concern. Many databases that AI systems rely on 
lack reliability, even though some dependable databases do exist. The suc-
cess rate of various databases and libraries used to train AI is not well es-
tablished. An important benchmark in this context is the number of 
synthetic steps required to produce molecules generated by AI. This emerg-
ing issue in synthetic chemistry might explain why fewer researchers are 
integrating AI into this area.

Barbara J. Grosz (NAE)

Computer Science and Engineering

Generative AI models have been changing computer science in the various 
ways John Hennessy describes for engineering fields at large, and their abil-
ity to help researchers find relevant prior work has the advantages and 
challenges he notes. More profoundly, generative models are providing new 
ways of interacting with computer systems, and, as they have proven capa-
ble of producing useful segments of code, they are radically changing the 
ways programmers work. Computer science education is changing as a 
result.

AI research in natural-language processing has had as its goals under-
standing people’s linguistic capacities and building systems that could 
match those capacities. It aimed, in part, to enable systems to participate 
in dialogues similar to those that occur when people talk with one another. 
Generative AI methods have enabled stunning successes in natural-language 
processing. In myriad ways, dialogues with systems based on these models 
now help people more easily use computer systems to find information and 
accomplish tasks across a broad range of domains. Though carried out in the 
languages people ordinarily speak, and thus more natural than program-
ming, these dialogues lack certain features of human-to-human dialogue. A 
kind of guided, sometimes collaborative, search for an answer, sugges-
tion, or solution, they are a mixture that is best captured by the new phrase 
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(and job opportunity), prompt engineering: the prompts are in a natural 
language, but the need for engineering is a symptom of the distinction.

The engineering must be good engineering; for that, anyone who does 
prompt engineering needs to learn not only effectiveness and efficiency but 
also ways to judge the quality of the results. Years ago, a theoretical physi-
cist railed at me that computing was making his students less competent 
modelers. They “just coded,” without questioning the answers they got back; 
they trusted the computer and had not developed intuitions that immedi-
ately made them consider whether the answers it generated made sense. For 
any complex computing system, it is hard to know whether a program does 
what one intends and expects it to do. Our current inabilities to understand 
why generative models produce the answers they do, and the hallucinations 
for which they are well known, exacerbates the problem of knowing whether 
the code they produce actually correctly performs the functions a user in-
tends. Computer scientists are as susceptible to pro-automation bias—the 
assumption that if a computer produces an answer, it is right—as others. 
Generative AI thus raises a critical new challenge for AI researchers, that 
of verifying the results that prompt dialogues produce. Meeting this chal-
lenge is likely to require expertise from several other areas of computer 
science, for instance, work on program verification and on interaction 
techniques. Notably, the new methods that are developed could be useful 
far beyond programming and computer science.

Computer science education is evolving in light of these new AI capa-
bilities. Students, like professional programmers, are now using generative 
AI systems to code for them. They differ from professional programmers, 
though, in the amount of experience they have programming without such 
support. How will they develop intuitions for detecting if the AI system has 
provided good code? What new skills do they need to learn for debugging 
and testing? The powers that generative AI has released makes it even more 
important for computing researchers, developers, and systems’ deployers 
to consider not only what systems they could build, but what systems they 
should build and the right way to design them, taking account of their po-
tential impacts on communities and societies as well as individuals. Teach-
ing the skills to reason about such matters is also beginning to become part 
of computer science education in some institutions.
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John L. Hennessy (NAS, NAE)

Computer and Information Sciences  
Computer Science and Engineering

We find ourselves in an interesting and fast-moving era. As Eric Horvitz 
and Tom Mitchell have discussed in their survey chapter, the emergence of 
deep leaning has created a discontinuity in the capabilities of AI systems. 
Many new engineering faculty members across a wide variety of disciplines 
have machine learning in a description of their research. We are seeing an 
incredible revolution in engineering in which these machine learning tech-
niques are going to be used as scouts to find novel approaches to problems 
and as tools to narrow the solution space, particularly for complex, high-
dimension optimization problems.

For example, researchers exploring new battery structures might use 
deep-learning techniques to search for materials that avoid some of the 
downsides of lithium. Another researcher might explore new methods to 
capture methane. One of the most amazing applications I have seen is the 
use of machine learning to understand turbulence and turbulent flow. Tur-
bulence is a classically hard problem that has resisted most of our numeri-
cal attempts. A breakthrough in analyzing and understanding turbulent 
flow would have applications in the design of wind turbines, automobiles, 
trains, and planes, as well as applications in other areas.

Of course, these deep-learning systems can be joined with traditional 
computational methods, as AlphaFold does. AlphaFold isn’t just an AI sys-
tem. It uses computational techniques as well. Melding these techniques 
together, allows a researcher to combine the strengths of each. The deep-
learning system may work better to determine the overall structure of a pro-
tein, while computational techniques may be more useful at fine-tuning 
the structure.

For engineers, finding the general structure of a solution is only step one 
of a process to realize a product that efficiently solves a real problem, which 
in the end is what drives engineers. Of course, you must worry whether an 
AI system is guiding the researchers in the right direction. Just as in other 
applications of machine learning, verification of the accuracy of predictions 
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will be important, and that will likely require human intelligence for some 
time to come.

Eric Horvitz (NAE)

Computer Science and Engineering

Reflecting on the current state of AI, I find myself immersed in two inter-
related realms: the scientific advancements of AI and their societal impacts. 
We are in an exciting period for AI, with the capabilities of neural network 
models rising faster than our understanding of the principles underlying 
the emergent behaviors we are observing. These advancements have stim-
ulated scientific curiosity and catalyzed new directions for AI research, 
bringing novel questions, methods, energy, and intensity to colleagues and 
teams that I collaborate with. Simultaneously, the rapid diffusion of AI tools 
into everyday life has deepened my sense of responsibility regarding the 
short- and long-term societal influences of AI technologies. I have invested 
increasing time and resources in reflecting on and addressing potential dis-
ruptions, ethical concerns, and the opportunities AI presents in various 
realms.

Scientific Journey

I was drawn to do my doctoral work in AI as the best path forward for 
gaining an understanding of the mysteries of human cognition. Close 
colleagues and I contributed to the ignition of a probabilistic revolution 
in AI, moving away from the dominant logic-based methods of the time, 
and working to advance the development of AI systems based on a founda-
tion of probability and utility theory. The axioms of probability were ex-
tended in the 1940s to inferences about taking ideal actions in the world via 
the axioms of utility theory, as first formulated by von Neumann and 
Morgenstern. Probability and utility theories form a widely assumed and 
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celebrated set of principles that have been considered a normative basis for 
rational reasoning and decision-making. There are multiple challenges 
with building AI systems in accordance with these principles, including 
computational complexity. A long-term complaint in AI was that the nor-
mative basis was unrealistic in terms of the requirements for computa-
tional resources. I focused during my doctoral efforts and for many years 
later on developing principles and models of bounded rationality built on a 
foundation of probability and utility that could enable systems with limited 
computational resources to perform well amid the complexity of the open 
world. The work included the development of formal mechanisms for guid-
ing evidence gathering and inference. Other teams explored numerous 
other approaches for leveraging probability in representations and reason-
ing. This shift to a rationalist approach to AI—harnessing a normative foun-
dation of probability and utility—became central in advancing machine 
learning, perception, reasoning, and decision-making.2 The approach en-
abled the community to build systems that could address real-world chal-
lenges, such as providing recommendations on medical diagnoses and 
decisions. The rationalist approach provided clear semantics and a strong 
theoretical foundation for building systems operating on understandable 
and sound principles.

Recent advancements in neural network models mark a significant 
inf lection point in AI’s trajectory.3 Impressive capabilities and rates of 
improvement are seen in vision, speech recognition, and language under-
standing benchmarks. Generative AI has recently emerged with models 
being built at increasing scales demonstrating surprising powers in 
generating language, images, video, and molecules. Neural-network mod-
els are being harnessed in numerous areas, including the sciences. For ex-
ample, advances in predicting protein structure and drug design are 
accelerating research in the biosciences, including efforts to design new 
therapeutics.

Despite the excitement, we grapple with the relationship of neural mod-
els to prior advances. In distinction to the clarity of previous work based 
on the rationalist approach, much of the detailed operation of generative 
models remains a mystery. Neural networks have thrust us into empirical 
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studies of these large-scale systems, akin to methodologies for probing and 
studying nervous systems.4 This jump, from a successful multidecade tra-
jectory of advances with rationalist approaches in AI to the mysteries of 
neural networks, frames intriguing and interesting opportunities to pur-
sue answers to significant questions that remain unanswered. We face a 
critical scientific challenge of bridging the gap between empirical obser-
vations of the behavior of neural networks and foundational principles of 
well-understood theories of inference and action. I hope to see bridges 
constructed over the next decade.

Societal Implications and Responsibilities

I believe that AI scientists and engineers have a critically important role 
and responsibility to identify and share technical developments that have 
implications for people—and society more broadly. Responsibilities in-
clude informing and engaging with multiple stakeholders across domains 
and sectors and working to broaden awareness and participation. This 
work involves being available for expert consultations, organizing and 
participating in special meetings and engagements around milestone de-
velopments, and establishing committees, organizations, and initiatives 
for tracking, guiding, and communicating about AI advances over time.

Fifteen years ago, AI was beginning to make its way into real-world ap-
plications as I assumed the presidency of the Association for the Advance-
ment of Artificial Intelligence (AAAI). I themed my presidency “AI in the 
Open World,” highlighting the need to develop AI systems that could per-
form robustly and in a trustworthy manner on real-world tasks, and also 
our responsibility to understand and address the potential societal impacts 
of the AI systems that we build.5 To explore societal influences, I commis-
sioned the AAAI Presidential Panel on Long-Term AI Futures. This initia-
tive culminated in a retreat at Asilomar in 2009, chosen for its symbolic 
connection to the historic meeting on recombinant DNA.6 The clear value 
of the discussions and collaborations at the AAAI Asilomar retreat and pre-
meetings sparked the establishment five years later of the One Hundred 
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Year Study on AI at Stanford, which was created to bring experts together 
every five years to observe, synthesize, and provide assessments and guid-
ance in the spirit of the AAAI Asilomar meeting.7 The study is endowed to 
continue this process for the life span of Stanford University. Projects of the 
study include the creation of faster-paced analyses, including the AI Index, 
an annual assessment of AI capabilities and influences.8

Beyond recurrent studies by experts, the ubiquity of AI’s influences re-
quires that diverse voices participate and help to guide the development and 
use of AI systems. AI scientists have a responsibility to organize, alert, and 
educate a spectrum of stakeholders—as well as to establish venues for lis-
tening and responding. In 2016, AI scientists from industry, academia, and 
nonprofit research centers cofounded the Partnership on AI, bringing to-
gether stakeholders from industry, academia, and civil society to foster 
discussions, analyses, and make recommendations on the responsible 
advancement of AI.9 As the founding chair, I’ve observed the power of 
bringing scientists together with policymakers, civil liberties experts, and 
a broad spectrum of civil society organizations. While still in its first decade, 
the Partnership on AI has already made significant contributions to multi-
party collaboration on key topics.

With potential fast-paced developments, AI scientists may need to en-
gage quickly at times and bring diverse expertise to the table as early as pos
sible when new capabilities and issues arise. Given the behaviors I saw in 
our internal studies of an early prerelease version of GPT-4 in August of 
2022, I felt it important to gain permission to share the confidential prere-
lease model with experts across disciplines. This initiative led to the AI 
Anthology effort, which provides multiple viewpoints on how the new 
capabilities might be best leveraged for human flourishing.10

AI scientists need also to inform and provide guidance to government 
agencies and leaders about technical advancements with AI and work with 
policymakers on steps forward. It has been an honor to be invited to testify 
on AI at both open hearings and closed sessions of Congress11—and to have 
opportunities to engage with senior leadership at the White House and col-
leagues via my role as a member of the President’s Council of Advisors on 
Science and Technology (PCAST).
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These diverse projects, engagements, and organizational efforts are 
examples of AI scientists’ responsibilities to engage and inform across 
sectors, to work to broaden awareness and participation, and to promote 
research on AI’s responsibilities, ensuring that we include multiple voices 
in assessments and decisions, and that we stay ahead of the innovation 
wave with technical, sociotechnical, and regulatory advancements.

Moving Forward

Looking ahead, the interplay between AI’s scientific advancements and so-
cietal impacts will become even more critical. We urgently need to grow 
our scientific understanding of the operation of systems built on neural 
network methodologies. Better scientific understandings will help us to 
shape the development and application of safe, reliable, fair, and under-
standable AI methods. We need to complement curiosity-driven re-
search and the thrill of scientific breakthroughs in AI foundations with 
investments in technology and policy to understand, shape, and regulate 
influences of the technologies on people and society. This work includes on-
going study spanning technology, design, and psychology of human-AI 
interaction.12

The potential benefits of AI are immense—from accelerating scientific 
discovery to improving education and raising the quality of health care out-
comes. However, we have to consider recognized risks, particularly with 
information and media integrity, biosecurity, fairness and equity, safety and 
reliability, and privacy and security. We must also stay on top of “deep cur-
rents” of more complex interactions of AI with culture and society, such as 
how these systems may change and disrupt—in costly and in valuable 
ways—education, the creative arts, scientific discovery, jobs, and the econ-
omy. We must work to monitor and come to better understandings of the 
subtle but potentially powerful influences of AI applications on the human 
psyche, including the impacts on our human dignity and agency.13 Out-
comes need not be dominated by situations and equilibria reached via 
laissez-fair flows of technology into society. With the maturation of AI and 
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its applications, we have opportunities to manage and guide the technol-
ogy with foresight and responsibility.

The current state of AI is marked by fast-paced progress and signifi-
cant challenges. As a scientist driven by curiosity about human cogni-
tion and devoted to reaching understandings of computational principles 
of intelligence, I’m excited by potential AI discoveries, machinery, and 
new applications on the horizon. At the same time, I am cautious and 
concerned about the influences of AI innovations on people and society. 
We need to make investments in steering AI’s development to promote 
human well-being and societal progress. Through continued scientific 
exploration and a thoughtful, inclusive, and multidisciplinary approach 
to applications and influences, we can leverage AI as a force for good, 
advancing our understandings of the scientific foundations of intelli-
gence and enriching human society. AI scientists, with their unique 
insights, must lead at the frontier, providing awareness of developments 
and implications and a commitment to engage with the public, civil 
society organizations, government leaders and agencies, and experts 
across various fields to address these responsibilities and to help shape 
AI’s future.

Kathleen Hall Jamieson (NAS)

Social and Political Sciences

Three of our retreatants—Barbara Grosz, Mary Gray, and John Hennessy—
played important roles in shaping the germinal National Academies of Sci-
ences, Engineering, and Medicine report, “Fostering Responsible Computing 
Research: Foundations and Practices,” that grounds our deliberations. By 
observing that “The social and behavioral sciences provide methods for 
identifying the morally relevant actors, environments, and interactions in 
a sociotechnical system,” that report draws attention to the role that the so-
cial and behavioral sciences should play in framing discussions and 
decision-making about generative AI.14
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It is the behavioral and social sciences, for example, that remind us that 
our language and our frames embed assumptions about ethics and equity 
about which we are largely unaware, a point made in Chapter 7 by Shobita 
Parthasarathy and Jared Katzman. Raw data for example are not “raw” but 
rather the product of choices and the values of those who frame the re-
search questions, privilege some methods over others, and in the process 
determine what is and is not considered evidence and proof. At the same 
time, conventionalizing the language of “artificial intelligence” risks 
changing our sense of what it means to say that someone or something is 
intelligent.

Social scientists who focus on human interaction and the ways in which 
humans act within social and political structures are grappling with such 
questions as: How does what we humans know, how we know it, and how 
we interact with each other and make sense of our worlds change if AI is 
layered atop the dispositions that humans have to deceive, distort, and act 
on their fears and venal impulses?

FactCheck​.org, which I cofounded, was premised on the idea that jour-
nalists could arbitrate disputes about “fact” by turning to evidence in impar-
tial trusted sources such as the Bureau of Labor Statistics and the National 
Academies that honor scientific norms and have generated reliable knowl-
edge in the past. That common knowledge could in turn help ground de-
liberation and governance. However, in an AI world, someone who seeks 
out the National Academy of Sciences’ website may find a hyperrealistic 
but fake site featuring a supposed President Marcia McNutt, who looks, 
sounds, and seems more like Marcia than Marcia herself but is promulgat-
ing pseudo-science. How can factcheckers or the public tell that the deep-
fake is not deep reality? I wrote a book on how Russian trolls and hackers 
helped elect a president in 2016. If you add the currently available AI tech-
nologies to their equation, the Russians would have succeeded to an even 
greater extent because their efforts probably would have gone undetected.

As AI scientists are developing ways to identify and constrain AI-
generated content, social and behavioral scientists are among those prob-
ing its impact both for good and ill on democratic systems and informed 
voting as well as on how and what we know and how we interact with each 
other and with these new technologies.
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Marcia K. McNutt (NAS, NAE)

Geology  
Earth Resources Engineering

In my view, there is hardly a field that has more benefited from AI, but also 
is imperiled because of AI, than the environmental sciences. And the ben-
efits have come because so much of this universe is inaccessible to humans 
or only accessed by humans at great cost and peril.

Deep space exploration was one of the earliest applications of an AI pre-
cursor called “automated planning and scheduling.” These smart systems 
used sensors on space probes to allow an unmanned vehicle itself to make 
decisions on operations based on what it was learning from its own instru-
mentation without having to endure the delay in sending data back to Earth 
for a human to make the decision.

Deep sea exploration followed suit and delivered even a higher payoff 
application. While underwater exploration can be conducted directly by 
humans, it is only with much sacrifice. Deep-diving human-occupied sub-
mersibles are cold, cramped, and uncomfortable for any length of time, and 
their use is further limited by high cost and extremely limited range. Re-
motely operated vehicles are more affordable but require an umbilical-cord 
tether to provide power from a surface ship and control from a ship-based 
pilot because the ocean is opaque to electronic message transmission. How-
ever, the tether restricts the spatial extent of the mission. Conversely, auto-
mated planning and scheduling installed in autonomous (untethered) 
underwater vehicles totally revolutionized our opportunities to explore the 
deep sea, both in cost and complexity of the mission. AI-guided vehicles 
can make their own decisions, execute complex search patterns in all di-
mensions, collect data and samples, know when the mission is accomplished, 
and then return home loaded with data and samples. Humans no longer 
needed to be involved in real time. AI-guided autonomous vehicles have 
greatly reduced the cost of exploration of hostile environments and in-
creased the scientific return.

These systems were likely the forerunners of today’s automated driving 
routines, except that there was no safety issue in the deep space or ocean. 
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If the vehicle misidentified something and ran into it, no one was going to 
die the way it is with cars on congested roads.

Other areas of the environmental sciences are benefiting from AI be-
yond exploration of Earth and space. For meteorology, AI is able to fore-
cast more accurate weather predictions and track dangerous storms like 
hurricanes. AI could as well predict the impact of some interventions on 
climate change. Using the same advances that allow AI systems to distin-
guish faces, AI is now regularly used to identify plants, animals, and other 
natural features from photos. This capability has been a boon to citizen sci-
ence, for example, in improving the accuracy of annual bird counts.

On the negative side, I am concerned about the impacts to the environ-
mental sciences from very successful and convincing fakeries, especially in 
terms of climate science. So much is at stake with our response to the cur-
rent climate crisis that big money will be invested in trying to debunk cli-
mate science and in arguing that interventions are not worthwhile. Our 
ability to detect when AI has been used in malevolent ways to overturn what 
is strong scientific consensus is constantly being challenged by more con-
vincing fakes.

Saul Perlmutter (NAS)

Physics

In physics, cosmology, and astrophysics, some of the more frequent AI ap-
plications that we’ve seen have to do with speeding up simulations. Simu-
lations have become a large part of so much science nowadays. It makes it 
possible to hunt for rare solution spaces that you wouldn’t have ever con-
sidered with a slow simulation. You might now be able to hunt for those so-
lutions with a fast mimic of the simulation that you get with AI.

This also means that AI changes a lot about how we do statistics. Over 
the years, we’ve moved toward more and more Monte Carlo–style statistics 
where you mimic the system that you’re working with, do many renditions 
of it, and that gives you the contours of statistics, rather than calculate them 
from first principles. This is another real advantage of having a much faster 
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technique for simulation. Statistics plays a huge role in the sciences, one that 
we don’t usually talk about (unless statistics is your field!). It’s a hidden-in-
plain-sight important tool, and I think it’s going to change dramatically 
with this AI capability.

Large language models also can enable advances that combine different 
fields, because they make it easier to do cross-disciplinary translations. I’ve 
already found myself in meetings with people from different fields during 
which I quickly looked up terminologies, acronyms, and jargon that they’re 
using in those fields, and this allowed me to be part of the cross-disciplinary 
conversation within a matter of seconds. Previously, you would have to go 
back and find this whole body of knowledge. That’s going to be an impor
tant game changer since so many scientific developments have to do with 
working at the edges between different domains in different fields.

Similarly, AI offers more fluid data wrangling. So much data science in-
volves getting data from point A to point B in a form that you can use, and 
we’re finding that these AI systems are very helpful in making that possi
ble. You can read entire datasets without looking up the manuals. AI can 
explain to you what every column is, and it actually does a good job in giv-
ing you a structure to be able to work with data that you might otherwise 
never have accessed.

Finally, people can take more mathematically sophisticated approaches 
because you can treat entire mathematical derivations as if it’s a calculator 
helping you do an arithmetic problem. And so that makes some activities 
much faster.

I don’t yet know about the idea of using AI to stimulate new ideas, like 
feeding the AI a bunch of papers and asking it “What’s missing here?” I can’t 
tell yet whether this is already something that’s becoming useful or whether 
it’s something that we might expect to become useful in the next genera-
tion. Here, a big concern is that we don’t want to get into idea feedback loops 
where the AI is training on material that comes out of people working with 
the previous generation of AI. We want to make sure that we don’t inad-
vertently feed our AI-generated material back into the AI training.
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William H. Press (NAS)

Computer and Information Sciences

AI will be transformative, but I am not waiting for the transformation. 
Right now, I use it every day for quick facts and a range of administrative 
and programming tasks that I would once have characterized as frustrat-
ing, fussy, or boring. (Of course, I always check the results.) Here are a 
few of my recent prompts:

1.	 “From various journals I have cut and pasted a bunch of refer-
ences below for a paper I am writing. Please convert them all to 
PNAS format.”

2.	 “Where did the funding of the Einstein Foundation in Berlin 
originally come from? I want to be sure that it is not money from 
a controversial industrial source. Please check your answer against 
reputable Web sources.”

3.	 “What serious human diseases are thought to already have been 
endemic in the Native American population in pre-Columbian 
times?”

4.	 “Give specific names of good reviewers for a paper that builds a large 
NN model (not an LLM) for predicting results from a large combina-
torial biology experiment? It’s similar to, but different from, drug-
discovery, so I want people with broader ML and NN experience. 
I especially want names of junior faculty at good universities.”

5.	 “In Python with Numpy, if I write something like neww = 
oldd[3:6,10:15], does neww point to data within oldd, or is a copy 
made?”

6.	 “I have a Jupyter notebook named mynotebook.ipynb . In Python, 
how can I extract the text of a particular cell and then reformat 
it to LaTeX format? The cell I want begins with the comment 
#ThisCellPlease.”

7.	 “In Python with Pandas and Numpy, I have a dataframe df. All 
entries are small integers. I want to make a large crosstabulation 
where each column is expanded to its number of unique values. 
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So, the crosstabulation will be an N by N matrix where N is the 
sum of the number of uniques for each column. How do I do this? 
Code only, please, no explanations.”

8.	 “I have a very big numerical dataframe and want to fit it with a 
Gaussian copula, and then generate synthetic rows from the fit-
ted model. Show me PyTorch code for doing this efficiently on a 
CUDA GPU.”

9.	 “I have an HTML and PHP page that uses Google’s Recaptcha v2 
like this:

$recaptcha = $_POST[“g-recaptcha-response”];
$secret_key = ‘my-secret-key’;
$url ​= ‘https://www​.google​.com​/recaptcha​/api​/siteverify​

?secret​=’
. $secret_key . ‘&response=’ . $recaptcha;
$response = file_get_contents($url);
$response = json_decode($response);

What would the code be to upgrade this to Google’s Recaptcha v3?”

Jeannette M. Wing (NAE)

Computer Science and Engineering

We are witnessing unfettered growth in the deployment of AI systems in 
critical domains such as autonomous vehicles, criminal justice, education, 
health care, and public safety, where decisions taken by AI agents directly 
impact human lives. This growth underlines the need for computer scien-
tists to understand and harness this technology better.

We need a scientific understanding of why today’s AI models work so 
well. We do not know their mathematical properties. We do not know how 
to quantify or predict their behavior. We do not know how to explain why 
an AI model produces one result and not another. Small perturbations to 
input data can lead to wildly different outcomes. When will adding more 
compute and more data to build larger models hit a wall? Experimentation 
in AI is far ahead of any kind of theoretical understanding.

https://www.google.com/recaptcha/api/siteverify?secret=
https://www.google.com/recaptcha/api/siteverify?secret=
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We need trustworthy AI.15 How can we trust decisions made by AI mod-
els to be accurate, fair, reliable, robust, safe, and secure, especially under 
adversarial attack? One approach is to use formal methods, based on math-
ematical logics and symbolic reasoning, to provide provable guarantees 
about AI systems. Formal methods applied to AI would require probabilis-
tic reasoning and characterizing verifiable properties of real-world data.

AI raises new ethical issues. The Belmont Principles of beneficence, jus-
tice, and respect for persons are a good starting point for AI. They need to 
be lifted to operate on groups of individuals, not only on individuals. Fi
nally, we need to revisit the codes of conduct in all professions that incor-
porate the use of AI.

Michael Witherell (NAS)

Physics

I am speaking as a leader of Berkeley Lab, where I have the privilege of lead-
ing 1,600 scientists working in a wide range of science and technology. As 
part of my job, I’ve had the joy of reading published impactful research on 
applying machine learning techniques in cosmology; particle and nuclear 
physics; material science; synthetic biology; matter genomics; environmen-
tal biology; geoscience; climate modeling; and smart grid, water treatment, 
and accelerator operations.

AI has had a transformative effect across all these fields of science, but 
much of the effort is invested in developing stable, robust, interpretable 
methods that can be explained, exposed, and verified to a skeptical scru-
tiny of researchers in these fields. And that’s actually what a lot of the work 
has been. What is often the primary barrier to accelerating R&D using AI 
is not the computing power available but rather the size and quality of the 
experimental or computational datasets available for training the models.

As an example, most of the data on local ecosystems were collected in 
small projects, producing specialized datasets in many areas that will not 
take advantage of meta-analysis in general, let alone AI, unless we have 
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interoperable datasets. Several groups around the country are working on 
projects to integrate these datasets, including one at Berkeley Lab.

I would like to offer another quick example that has been recently in the 
news. Researchers have developed fast, agile, and reliable weather models 
using AI that offer an unprecedented level of high-resolution information. 
Such models could provide improved guidance to prepare communities for 
extreme weather events. In a very short time, these models have gotten to 
the point that their results are as reliable as for the traditional models and 
can be run much faster. The new models produce a range of scenarios, each 
one taking less than two seconds, which is several orders of magnitude faster 
than existing models. One can now create huge ensembles of predicted 
weather outcomes, greatly increasing the ability to forecast low-probability, 
high impact events. Consider the lives that could be saved if such models 
can be made very reliable and if the predictions they make can be commu-
nicated in a way that is trusted by the public.

Most of the AI-enabled advances in research to date have been 
accomplished with special purpose models. Because the remarkable 
general-purpose large AI models are so new, we still need to understand 
their full potential to accelerate scientific research. If we consider the fields 
of science in which the data is not personal data, the principal risk is that 
an apparent discovery might be due to an artifact or a hallucination by the 
model. How do you show that this new type of black hole is real and not 
something that was manufactured by the model? One must closely embed 
computer scientists with physical scientists, biologists, and climate scien-
tists from the beginning of the research project. By working together as an 
integrated team they can develop analytic tools that will produce verifiable 
results able to stand up to rigorous scrutiny by the scientific community.

Finally, although many of these areas do not work with human data, 
they still can have complex and sensitive interactions that have ethical 
and societal implications. For example, consider a system for detecting, 
measuring, and reporting methane leaks using satellite data and ground-
based observations, all integrated with AI. This is a really important 
problem with great significance for the global community. Who is to be 
trusted with the design and use of such a system? An oil and gas company, 
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a consortium of utilities, the US Department of Energy? The governance of 
such a system is critical in making sure it serves all of us well.
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R evolutionary advances in AI have brought us to a transformative 
moment for science. AI is accelerating scientific discoveries and 
analyses. At the same time, its tools and processes challenge core 

norms and values in the conduct of science, including accountability, trans-
parency, replicability, and human responsibility.1 These difficulties are par-
ticularly apparent in recent advances with generative AI. Future innovations 
with AI may mitigate some of these or raise new concerns and challenges.

With scientific integrity and responsibility in mind, the National Acad
emy of Sciences, the Annenberg Public Policy Center of the University of 
Pennsylvania, and the Annenberg Foundation Trust at Sunnylands recently 
convened an interdisciplinary panel of experts with experience in aca-
demia, industry, and government to explore rising challenges posed by the 
use of AI in research and to chart a path forward for the scientific commu-
nity. The panel included experts in behavioral and social sciences, ethics, 
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biology, physics, chemistry, mathematics, and computer science, as well as 
leaders in higher education, law, governance, and science publishing and 
communication. Discussions were informed by commissioned papers de-
tailing the development and current state of AI technologies; the potential 
effects of AI advances on equality, justice, and research ethics; emerging 
governance issues; and lessons that can be learned from past instances 
where the scientific community addressed new technologies with signifi-
cant societal implications.2

Generative AI systems are constructed with computational procedures 
that learn from large bodies of human-authored and curated text, imagery, 
and analyses, including expansive collections of scientific literature. The sys-
tems are used to perform multiple operations, such as problem-solving, data 
analysis, interpretation of textual and visual content, and the generation of 
text, images, and other forms of data. In response to prompts and other direc-
tives, the systems can provide users with coherent text, compelling imagery, 
and analyses, while also possessing the capability to generate novel syntheses 
and ideas that push the expected boundaries of automated content creation.

Generative AI’s power to interact with scientists in a natural manner, 
to perform unprecedented types of problem-solving, and to generate novel 
ideas and content poses challenges to the long-held values and integrity of 
scientific endeavors. These challenges make it more difficult for scientists, 
the larger research community, and the public to 1) understand and con-
firm the veracity of generated content, reviews, and analyses; 2) maintain 
accurate attribution of machine- versus human-authored analyses and in-
formation; 3) ensure transparency and disclosure of uses of AI in produc-
ing research results or textual analyses; 4) enable the replication of studies 
and analyses; and 5) identify and mitigate biases and inequities introduced 
by AI algorithms and training data.

Five Principles of Human Accountability 
and Responsibility

To protect the integrity of science in the age of generative AI, we call upon 
the scientific community to remain steadfast in honoring the guiding norms 
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and values of science. We endorse recommendations from a recent National 
Academies report that explores ethical issues in computing research and 
promoting responsible practices through education and training.3 We also 
reaffirm the findings of earlier work performed by the National Academies 
on responsible automated research workflows, which called for human re-
view of algorithms, the need for transparency and reproducibility, and ef-
forts to uncover and address bias.4

Building upon the prior studies, we urge the scientific community to 
focus sustained attention on five principles of human accountability and re-
sponsibility for scientific efforts that employ AI:

1. Transparent Disclosure and Attribution

Scientists should clearly disclose the use of generative AI in research, in-
cluding the specific tools, algorithms, and settings employed; accurately at-
tribute the human and AI sources of information or ideas, distinguishing 
between the two and acknowledging their respective contributions; and en-
sure that human expertise and prior literature are appropriately cited, even 
when machines do not provide such citations in their output.

Model creators and refiners should provide publicly accessible details 
about models, including the data used to train or refine them; carefully man-
age and publish information about models and their variants so as to provide 
scientists with a means of citing the use of particular models with specific-
ity; provide long-term archives of models to enable replication studies; dis-
close when proper attribution of generated content cannot be provided; and 
pursue innovations in learning, reasoning, and information retrieval ma-
chinery aimed at providing users of those models with the ability to attri-
bute sources and authorship of the data employed in AI-generated content.

2. Verification of AI-Generated Content and Analyses

Scientists are accountable for the accuracy of the data, imagery, and infer-
ences that they draw from their uses of generative models. Accountability 
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requires the use of appropriate methods to validate the accuracy and reli-
ability of inferences made by or with the assistance of AI, along with a 
thorough disclosure of evidence relevant to such inferences. It includes 
monitoring and testing for biases in AI algorithms and output, with the goal 
of identifying and correcting biases that could skew research outcomes or 
interpretations.

Model creators should disclose limitations in the ability of systems to 
confirm the veracity of any data, text, or images generated by AI. When veri-
fication of the truthfulness of generated content is not possible, model out-
put should provide clear, well-calibrated assessments of confidence. Model 
creators should proactively identify, report, and correct biases in AI algo-
rithms that could skew research outcomes or interpretations.

3. Documentation of AI-Generated Data

Scientists should mark AI-generated or synthetic data, inferences, and 
imagery with provenance information about the role of AI in their gen-
eration, so that it is not mistaken for observations collected in the real 
world. Scientists should not present AI-generated content as observations 
collected in the real world.

Model creators should clearly identify, annotate, and maintain prove-
nance about synthetic data used in their training procedures and monitor 
the issues, concerns, and behaviors arising from the reuse of computer-
generated content in training future models.

4. A Focus on Ethics and Equity

Scientists and model creators should take credible steps to ensure that their 
uses of AI produce scientifically sound and socially beneficial results while 
taking appropriate steps to mitigate the risk of harm. This includes advis-
ing scientists and the public on the handling of trade-offs associated with 
making certain AI technologies available to the public, especially in light 
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of potential risks stemming from inadvertent outcomes or malicious 
applications.

Scientists and model creators should adhere to ethical guidelines for AI 
use, particularly in terms of respect for clear attribution of observational 
versus AI-generated sources of data, intellectual property, privacy, disclosure, 
and consent, as well as the detection and mitigation of potential biases in 
the construction and use of AI systems. They should also continuously mon-
itor other societal ramifications likely to arise as AI is further developed 
and deployed and update practices and rules that promote beneficial uses 
and mitigate the prospect of social harm.

Scientists, model creators, and policymakers should promote equity in 
the questions and needs that AI systems are used to address as well as eq-
uitable access to AI tools and educational opportunities. These efforts should 
empower a diverse community of scientific investigators to leverage AI 
systems effectively and to address the diverse needs of communities, in-
cluding the needs of groups that are traditionally underserved or margin-
alized. In addition, methods for soliciting meaningful public participation 
in evaluating equity and fairness of AI technologies and uses should be 
studied and employed.

AI should not be used without careful human oversight in decisional 
steps of peer review processes or decisions around career advancement and 
funding allocations.

5. Continuous Monitoring, Oversight, and Public Engagement

Scientists, together with representatives from academia, industry, govern-
ment, and civil society, should continuously monitor and evaluate the im-
pact of AI on the scientific process, and with transparency, adapt strategies 
as necessary to maintain integrity. Because AI technologies are rapidly 
evolving, research communities must continue to examine and understand 
the powers, deficiencies, and influences of AI; work to anticipate and pre-
vent harmful uses; and harness its potential to address critical societal chal-
lenges. AI scientists must at the same time work to improve the effectiveness 



226	 Chapter 10

of AI for the sciences, including addressing challenges with veracity, attri-
bution, explanation, and transparency of training data and inference pro-
cedures. Efforts should be undertaken within and across sectors to pursue 
ongoing study of the status and dynamics of the use of AI in the sciences 
and pursue meaningful methods to solicit public participation and engage-
ment as AI is developed, applied, and regulated. Results of this engage-
ment and study should be broadly disseminated.

A New Strategic Council to Guide AI in Science

We call upon the scientific community to establish oversight structures ca-
pable of responding to the opportunities AI will afford science and to the 
unanticipated ways in which AI may undermine scientific integrity.

We propose that the National Academies of Sciences, Engineering, and 
Medicine establish a Strategic Council on the Responsible Use of Artificial 
Intelligence in Science.5 The council should coordinate with the scientific 
community and provide regularly updated guidance on the appropriate uses 
of AI, especially during this time of rapid change. The council should study, 
monitor, and address the evolving uses of AI in science; new ethical and 
societal concerns, including equity; and emerging threats to scientific 
norms. The council should share its insights across disciplines and develop 
and refine best practices.

More broadly, the scientific community should adhere to existing guide-
lines and regulations while contributing to the ongoing development of 
public and private AI governance. Governance efforts must include engage-
ment with the public about how AI is being used and should be used in the 
sciences.

With the advent of generative AI, all of us in the scientific community 
have a responsibility to be proactive in safeguarding the norms and values of 
science. That commitment—together with the five principles of human ac-
countability and responsibility for the use of AI in science and the standing 
up of the council to provide ongoing guidance—will support the pursuit of 
trustworthy science for the benefit of all.
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CHAPTER 11

Safeguarding the Norms and Values of 

Science in the Age of Generative AI

Kathleen Hall Jamieson and Marcia K. McNutt

Revolutionary advances in AI have brought us to a 

transformative moment for science. AI is accelerating 

scientific discoveries and analyses. At the same time, 

its tools and processes challenge core norms and 

values in the conduct of science, including 

accountability, transparency, replicability, and human 

responsibility. . . .

We call upon the scientific community to establish 

oversight structures capable of responding to 

the opportunities AI will afford science and to the 

unanticipated ways in which AI may undermine 

scientific integrity.

We propose that the National Academies of 

Sciences, Engineering, and Medicine establish a 

Strategic Council on the Responsible Use of Artificial 

Intelligence in Science. The council should coordinate 

with the scientific community and provide regularly 

updated guidance on the appropriate uses of AI, 

especially during this time of rapid change. The council 

should study, monitor, and address the evolving uses of 
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AI in science; new ethical and societal concerns, 

including equity; and emerging threats to scientific 

norms. The council should share its insights across 

disciplines and develop and refine best practices.

—Blau et al., “Protecting Scientific Integrity  

in an Age of Generative AI”

T his chapter is premised on the fact capsulized in the opening sen-
tence of the NAS-APPC-Sunnylands (hereafter “Sunnylands” or 
“working group”) working group statement: “Revolutionary ad-

vances in AI have brought us to a transformative moment for science.”1 
Many of these transformations are explored in Chapter 3 by Jeannette Wing, 
Chapter 8 by Eric Horvitz and Tom Mitchell, and in the perspectives pieces 
in Chapter 9 (for biographies, see Appendix 2).

However, as the Sunnylands statement also notes, AI’s “tools and pro
cesses challenge core norms and values in the conduct of science, includ-
ing accountability, transparency, replicability, and human responsibility.”2 
Here we explain the need to safeguard the interrelated scientific norms of 
transparency and accountability (and, with them, replicability) as well as 
the ethical principles that shape our understanding of scientists’ responsi-
bilities in the face of transformative changes. In the process, we signal the 
rationale underlying the working group’s twofold call for monitoring and 
addressing threats to those norms and ethical values. The first urges “Sci-
entists, together with representatives from academia, industry, government, 
and civil society . . . ​[to] continuously monitor and evaluate the impact of 
AI on the scientific process, and with transparency, adapt strategies as nec-
essary to maintain integrity.”3 The second calls for establishment of a Na-
tional Academy of Sciences, Engineering and Medicine (NASEM) Strategic 
Council on the Responsible Use of Artificial Intelligence in Science to “moni-
tor, and address the evolving uses of AI in science; new ethical and societal 
concerns, including equity; and emerging threats to scientific norms.”

Whether scientists are probing black holes, microbes, or human psy
chology, the scientific community which they form is bound together by 
its commitment to a common set of norms, among them one that requires 
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individual and collective human responsibility for engaging in practices that 
foster accountability and with it the transparency that makes replicability 
possible. This combination of commitments provides scientists with the 
wherewithal to engage in the organized skepticism that fosters a hallmark 
of science, a culture of critique and correction. That culture in turn incen-
tivizes an ongoing updating of what is known through science’s methods. 
Scientists are united as well by ongoing efforts to ensure not only that these 
norms and values are honored but also that ways to honor them are re-
freshed in the face of changing circumstances. The rapidly evolving ca-
pacities of AI have created such circumstances.

The Nature, Function, and Importance 
of Scientific Norms

Whether thought of as aspirations,4 prescriptions telling scientists how they 
should behave,5 or myths used by scientists to justify resources, enhance 
survivability, and burnish perceptions of the legitimacy of their work,6 
the norms espoused by science, such as accountability, transparency (and 
with it replicability), a culture of critique and correction,7 and respect for 
the ethical limits and obligations in the conduct of their work (i.e., respect 
for persons, beneficence, and justice), are an integral part of scientists’ 
self-presentation.8 Together, they encourage scientists “to resist contrary 
impulses.”9 Structures that incentivize transparency and catching and 
correcting errors and fraud couple with the inherent competition among 
scientists to sustain the organized skepticism10 that facilitates both discov-
ery and the production and updating of knowledge.11

Because trust in science increases when scientists and the outlets cer-
tifying the trustworthiness of their work honor the norms and values of 
science,12 the scientific community, in the form of universities, journal fam-
ilies, professional organizations, and entities such as the National Acad
emy of Sciences and National Science Foundation, engages in an ongoing 
examination of ways to increase adherence to them. For example, the sa-
lience of the norm of transparency was bolstered when major journals be-
gan requiring preregistration of hypotheses and analysis plans, disclosure 



232	 Chapter 11

of conflicts of interest, and depositing of data and codes as conditions of 
publication. Along the way, signals of trustworthiness such as checklists 
and badging have been conventionalized as means of communicating that a 
publication has honored scientific norms.13 Structures that inculcate norms 
and instill the value of human accountability include the responsible con-
duct of research (RCR) education and training that the National Institutes 
of Health requires of its grantees14 and Institutional Review Boards that su-
perintend research involving human subjects in universities.15

Among the norm-related themes interlaced throughout the various AI 
governance frameworks explored by professor of Public Policy, Governance, 
and Innovative Technology, and dean of the TUM School of Social Sciences 
and Technology at the Technical University of Munich, Urs Gasser, in Chap-
ter 5 are those of concern here, including the need to ensure that AI sys-
tems are responsive to human needs, ethical, subject to human oversight 
and accountability, and transparent.

Human Accountability and Responsibility

Concerns Motivating Calls for a Focus on Human 
Responsibility and Accountability

There is widespread agreement that AI should “augment human intelli-
gence, not replace it,”16 a sentiment sometimes phrased as the desire to see 
AI function as a copilot not an autopilot.17 There is agreement as well that 
vigorous human oversight of the development of AI is needed. Consistent 
with this view, a March 2023 open letter signed by CEO of Tesla Motors Elon 
Musk, Apple cofounder Steve Wozniak, Skype cofounder Jaan Tallinn, and 
a number of “well-known AI researchers”18 called for a six-month “pause” 
in AI development. “AI labs and independent experts should use this pause 
to jointly develop and implement a set of shared safety protocols for ad-
vanced AI design and development that are rigorously audited and over-
seen by independent outside experts,” the signatories noted.19

The letter asserted that “Contemporary AI systems are now becoming 
human-competitive at general tasks” and, in language that some saw as 
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overblown,20 cast dire threats to humankind in questions including “Should 
we let machines flood our information channels with propaganda and 
untruth? Should we automate away all the jobs, including the fulfilling 
ones? Should we develop nonhuman minds that might eventually outnum-
ber, outsmart, obsolete and replace us? Should we risk loss of control of our 
civilization?” “Such decisions,” it concluded, “must not be delegated to un-
elected tech leaders.”21

After that letter’s call for a pause went unheeded, two months later a 
number of the same experts issued a twenty-two-word statement that elic-
ited headlines around the globe. “Mitigating the risk of extinction from AI 
should be a global priority alongside other societal-scale risks such as pan-
demics and nuclear war,” it said. Among the goals of that statement was cre-
ating “common knowledge of the growing number of experts and public 
figures who also take some of advanced AI’s most severe risks seriously.”22 
As in the case of the letter that preceded it, the credentials of the signato-
ries heightened the credibility of the posited risk. “Published by a San 
Francisco-based non-profit, the Center for AI Safety,” the statement “has 
been co-signed by figures including Google DeepMind CEO Demis Hass-
abis and OpenAI CEO Sam Altman, as well as Geoffrey Hinton and Yo-
shua Bengio—two of the three AI researchers who won the 2018 Turing 
Award (sometimes referred to as the ‘Nobel Prize of computing’) for their 
work on AI,” noted The Verge.23

Agreement on the Need for Human Responsibility and 
Accountability Expressed in Other Frameworks

The need for human responsibility and accountability has been voiced from 
the beginning of contemporary deliberations about the future of AI. So, for 
example, “Responsibility” and “Human Control” were among the Asilomar 
AI Principles promulgated in 2017 to guide the development of AI. In the 
words of that influential document:

Responsibility: Designers and builders of advanced AI systems are 
stakeholders in the moral implications of their use, misuse, and 
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actions, with a responsibility and opportunity to shape those 
implications. . . .
Human Control: Humans should choose how and whether to 
delegate decisions to AI systems, to accomplish human-chosen 
objectives.24

However, efforts to ensure human responsibility and accountability are 
complicated by the transformations that AI portends, the pace with which 
its capacities are evolving, and the opacity of its systems. “Human agency 
and oversight”25 are as a result focal to guidelines such as the 2019 European 
Union’s High-Level Expert Group on AI’s Ethics Guidelines for Trustwor-
thy Artificial Intelligence. “AI systems should empower human beings, al-
lowing them to make informed decisions and fostering their fundamental 
rights,” it declares. “At the same time, proper oversight mechanisms need 
to be ensured, which can be achieved through human-in-the-loop, human-
on-the-loop, and human-in-command approaches.”26 The same focus can 
be found in the document cast as “the world’s first comprehensive AI regu-
latory framework,”27 the European Union’s AI Act. “As a prerequisite, AI 
should be a human-centric technology,” that Act states. “It should serve as 
a tool for people, with the ultimate aim of increasing human well-being.”28 
In a similar manner, the November  2023 Bletchley Declaration by the 
countries attending the AI Safety Summit, a list that includes the United 
States, declares that “for the good of all, AI should be designed, devel-
oped, deployed, and used, in a manner that is safe, in such a way as to be 
human-centric, trustworthy and responsible.”29

Human Accountability and Responsibility in the 
Sunnylands Statement

Consistent with these frameworks, the Sunnylands statement calls on rel-
evant communities to focus sustained attention on five principles of 
human accountability and responsibility for scientific efforts that use AI.30 
The first, “transparent disclosure and attribution,” focuses on transpar-
ency. The second’s appeal for “verification of AI-generated content and 
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analysis” focuses on accountability. The third, “documentation of AI-
generated data,” aims to achieve both. The fourth calls for “a focus on eth-
ics and equity.” The first four define foci for the “continuous monitoring, 
oversight, and public engagement” called for by the fifth principle.

Transparency and Accountability

Calls for Transparency and Accountability in Other Frameworks

The context dependence of transparency and oversight requirements for AI 
is specifically recognized in Article 8 of the Council of Europe Framework 
Convention on Artificial Intelligence and Human Rights, Democracy and 
the Rule of Law, which notes that “Each Party shall adopt or maintain 
measures to ensure that adequate transparency and oversight requirements 
tailored to the specific contexts and risks are in place in respect of activi-
ties within the lifecycle of artificial intelligence systems, including with re-
gard to the identification of content generated by artificial intelligence 
systems.” Underlying the EU Act for example, are requirements directly ap-
plicable to nation states and their citizenries. These include: “AI systems 
and their decisions should be explained in a manner adapted to the stake-
holder concerned. Humans need to be aware that they are interacting with 
an AI system and must be informed of the system’s capabilities and limita-
tions.”31 Likewise, a specific facet of governmental systems is the focus of 
the Asilomar AI principle titled “judicial transparency” that specifies that 
“Any involvement by an autonomous system in judicial decision-making 
should provide a satisfactory explanation auditable by a competent human 
authority.”32

Why Transparency and Accountability Matter in Science

In science, the norm of transparency focuses on disclosure of the scien-
tist’s affiliations (e.g., verified through ORCID), contributions, and poten-
tial conflicts of interest (currently documented in contributorship and 
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COI attestations signed when submitting work to a journal), and on the 
accessibility and usability of the means needed to critique, reproduce, and 
replicate scientific work. By requiring transparent disclosure of an indi-
vidual’s contributions to the investigation as well as any relationships and 
interests that might bias the research process or reporting of it, science ties 
crediting an author to accountability for a specified facet of the work.33 At 
the same time, ready access to data, methods, and code and the like make 
possible five activities that ground reliability in science: reproduction, rep-
lication, critique, accountability, and correction.

A study cannot be reproduced or replicated, or its errors caught and the 
scientific record corrected, unless its data and methods are disclosed and 
available for critique, reproduction, and replication by others. As the 2019 
NASEM report Reproducibility and Replicability recognizes, “transparency 
[which represents the extent to which researchers provide sufficient infor-
mation to enable others to reproduce the results] is a prerequisite for repro-
ducibility.”34 To assess the validity of a study’s findings, independent 
researchers reproduce the study. When they obtain “consistent results us-
ing the same input data; computational steps, methods, and code; and con-
ditions of analysis,” the results are considered reproducible. “To help 
ensure the reproducibility of computational results,” NAS’s 2019 Reproduc-
ibility and Replicability in Science report states, “researchers should convey 
clear, specific, and complete information about any computational meth-
ods and data products that support their published results in order to en-
able other researchers to repeat the analysis, unless such information is 
restricted by nonpublic data policies. That information should include the 
data, study methods, and computational environment.”35 Without repro-
ducibility, replication in which a researcher “collects new data to arrive at 
the same scientific findings as a previous study” is impossible.36

Studies that replicate increase the body of scientific knowledge. “If find-
ings are not replicable, then prediction and theory development are sti-
fled,” notes psychologist and founder the Center for Open Science, Brian 
Nosek. “If findings are replicable, then interrogation of their meaning and 
validity can advance knowledge. Assessing replicability can be productive 
for generating and testing hypotheses by actively confronting current un-
derstandings to identify weaknesses and spur innovation.”37
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In recent decades, journals have reinforced the norm of transparency 
and fostered critique, reproduction, and replication by requiring preregis-
tration and public access to data, code, and analysis plans.38 By requiring 
disclosure of exacting detail, they increase the ability of scholars to repro-
duce and replicate work. So for example, Science requires that authors “in-
dicate whether there was a pre-experimental plan for data handling (such 
as how to deal with outliers), whether they conducted a sample size estima-
tion to ensure a sufficient signal-to-noise ratio, whether samples were treated 
randomly, and whether the experimenter was blind to the conduct of the 
experiment.”39 And in 2024 both the Proceedings of the National Academy 
of Sciences (PNAS) and Science added reporting requirements pertaining to 
the nature of survey research samples and the ways in which they are 
weighted.40

Scientific disciplines reinforce and refine means of honoring the norm 
of transparency as well. In 2012, for example, the American Political Sci-
ence Association (APSA) promulgated guidelines stating that researchers 
were ethically obligated to “facilitate the evaluation of their evidence-based 
knowledge claims through data access, production transparency, and ana-
lytic transparency.”41 In 2022, APSA updated those requirements to more 
clearly delineate the expected forms of access:

Researchers have an ethical obligation to facilitate the evaluation 
of their research or empirical results. Researchers should be 
explicit about the data sources and methods used, including data 
sampling, weighting, research design, etc. Researchers should 
reference the data sources used. If the data were generated or 
collected by the scholar, researchers should provide access to those 
data or explain why they cannot. Researchers working with 
commercial data, big data, text or audio data, social media data, 
biometric data, digital media archives, geo-located data or 
confidential data sources that cannot be made publicly available in 
raw form should provide summary statistics of the data at the 
finest granulation possible, and clear coding and replication 
documentation. Attempts to allow others to replicate the analysis 
should be undertaken. Whenever possible, researchers should 
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provide access to the raw data. Researchers should follow scientific 
standards for making evidence-based knowledge claims by 
providing a detailed account of how they draw their analytic 
conclusions from the data.42

The Threat AI Poses to the Norm of Transparency and, with It, to 
Reproducibility and Replication

However, the opacity of some data-intensive AI applications makes it dif-
ficult for scholars relying on them to understand and disclose their data and 
decision-making processes. “Most data-intensive AI applications are essen-
tially opaque, ‘black-box’ systems, and new systems capabilities are needed 
for users to be able to understand the decisions made by the algorithms and 
their potential impacts on individuals and society . . . ,” noted the National 
Academies of Sciences, Engineering, and Medicine’s 2022 report, Fostering 
Responsible Computing Research: Foundations and Practices. “Computing 
research has only begun to address the need for transparency of these 
systems.”43

This opacity threatens the scientific norms of transparency and account-
ability by making it challenging to ascertain model accountability and re-
sponsibility and in the process to verify the integrity of AI-generated output 
including images. “I don’t think I will be able to recognize a good AI-
generated image anymore . . . ,” noted image detection sleuth Elisabeth Bik 
on February in 2024, “there’s probably a lot of papers being produced right 
now that we can no longer recognize as fake.”44 Both transparency and ac-
countability are called into question when AI technology fabricates images45 
and data or plagiarizes.46

The problems associated with opacity are compounded by a second 
phenomenon—generative AI’s ability to create convincing but fabulated 
“hyperrealistic content.”47 “For any complex computing system, it is hard 
to know whether a program does what one intends and expects it to do,” 
noted Barbara Grosz, Higgins Research Professor of Natural Sciences, 
Harvard SEAS (see Chapter 9) and the lead scholar on the Fostering Re-
sponsible Computing Research report during the Sunnylands deliberations. 
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“Our current inabilities to understand why generative models produce 
the answers they do, and the ‘hallucinations’ for which they are well 
known, exacerbate the problem of knowing whether the code they produce 
actually correctly performs the functions a user intends.”

A further psychological factor increases human susceptibility to the 
pernicious effects of hallucinations. In a phenomenon known as automa-
tion bias, humans, in the words of Fostering, tend to defer to “(automated) 
computing systems, leading to their disregarding potentially countervailing 
possibilities or evidence or failing to pursue them.”48 The “neutral computa-
tional certainty”49 with which these hallucinations invent content, images, 
analyses, and attributions and other forms of convincing “hyperrealistic 
content”50 makes computational bias difficult to counteract or blunt.

Recognizing the importance of safeguarding the transparency norm 
of science and with it replication, reproduction, accountability, critique 
and correction, the Sunnylands statement calls for: (Principle one) Trans-
parent disclosure and attribution; (Principle two) Verification of AI-
generated content; and, analyses, and (Principle three) Documentation of 
AI-generated data.

Ethics and Equity

Calls for Ethics and Equity in Other Frameworks

The global landscape of AI includes many AI principles initiatives, as Gas-
ser notes (see Chapter 5). Underlying them are understandings forged from 
the recognition that the scientific pursuit of knowledge must never be un-
dertaken at the expense of human dignity or autonomy. These ethical frame-
works include the Rome Call for Ethics promulgated on February 28, 2020 
“to promote an ethical approach to artificial intelligence,”51 a call that 
grounded its commitments in the Universal Declaration of Human Rights, 
the milestone 1948 statement by the United Nations (General Assembly res-
olution 217 A) that defined “a common standard of achievements for all 
peoples and all nations.”52 In 2024, in a ceremony in Hiroshima’s Peace 
Memorial Park the representatives of eleven world religions including 
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Buddhism, Hinduism, Zoroastrianism, Bahá’í as well as of the Abrahamic 
faiths added their names to the list of signatories, a list that already in-
cluded representatives from tech giants such as Microsoft and IBM.53 Sig-
natories to the Rome Call commit to “the development of an artificial 
intelligence that serves every person and humanity as a whole; that re
spects the dignity of the human person, so that every individual can ben-
efit from the advances of technology; and that does not have as its sole goal 
greater profit or the gradual replacement of people in the workplace.”

The same underlying precepts can be found in the 2019 European 
Union’s High-Level Expert Group on AI’s Ethics Guidelines for Trustwor-
thy Artificial Intelligence. In that document they take the form of a com-
mitment to “Diversity, non-discrimination and fairness” expressed as 
statements that “Unfair bias must be avoided, as it could have multiple neg-
ative implications, from the marginalization of vulnerable groups, to the 
exacerbation of prejudice and discrimination. Fostering diversity, AI sys-
tems should be accessible to all, regardless of any disability, and involve rel-
evant stakeholders throughout their entire life circle.”54

In Response to Scientific Abuses, Key Ethical Principles Were Codified

Important forms of human responsibility and accountability were codified 
in the Nurenberg Code, the Universal Declaration of Human Rights, and 
the Belmont Report in response to abuses of science both in Nazi Germany 
and in the United States. With its focus on “respect for human rights, indi-
vidual autonomy, and informed consent,”55 the 1947 Nuremberg Code be-
came “part of the infrastructure of the democratic international system that 
emerged after World War II.”56 In a similar vein, the 1948 Universal Decla-
ration of Human Rights affirms “the inherent dignity and of the equal and 
inalienable rights of all members of the human family” and offers the re-
minder that “disregard and contempt for human rights have resulted in bar-
barous acts which have outraged the conscience of mankind.”57

Among the science-tied abuses in the United States that gave rise to the 
Belmont Report58 were the US Public Health Service’s Tuskegee Syphilis Ex-
periment, which scholars have characterized as a “forty year deathwatch,”59 
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and governmental experiments that exposed human subjects to radiation.60 
Durable reforms shaped by the Belmont principles include the Institutional 
Review Boards (IRBs)61 that govern research supported by the US govern-
ment62 and the responsible conduct of research principles (RCR)63 that are 
now a taken for granted part of human subjects research in the United 
States.

Each of the Belmont Report’s basic principles—respect of persons, be-
neficence, and justice—led to a requirement. “Just as the principle of respect 
for persons finds expression in the requirements for consent, and the princi
ple of beneficence in risk/benefit assessment, the principle of justice gives 
rise to moral requirements that there be fair procedures and outcomes in 
the selection of research subjects,” noted the Report.64 As Alex John Lon-
don, K&L Gates Professor of Ethics and Computational Technologies at 
Carnegie Mellon University, argues in Issues in Science and Technology, 
“given the esteem the Belmont system has earned, it should be no sur-
prise that concerned parties increasingly argue for its extension to AI 
innovation.”65

Building upon the Principles of the Belmont Report: Ethics and Equity

In his essay in this volume, London extends the Belmont principles to in-
clude two others: nonmaleficence, “generally understood as the duty to 
avoid inflicting harm or imposing burdens on others,” and fairness, “the 
duty to treat like cases alike, to apply the same rules or to follow the same 
process for all individuals, regardless of features or characteristics that 
are not directly related to some morally relevant aspect of the case.”66 The 
norm of fairness is reflected in the Sunnylands statement’s Principle Four: 
Focus on Ethics and Equity.

London’s recommendations are responsive to the need highlighted by 
working group member Jeannette Wing, Executive Vice President for 
Research and Professor of Computer Science at Columbia University, 
who argues in Chapter 3 that the Belmont principles of beneficence, jus-
tice, and respect for persons “need to be lifted to operate on groups 
of  individuals, not just on individuals.”67 Among the reasons, explains 
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NAS-APPC-Sunnylands group member Mary Gray, Senior Principal 
Researcher at Microsoft Research: “even rigid conformity to Belmont 
principles may not ensure the interests of groups said to be represented 
by AI models.”68 Recognizing “the interdependence and reciprocity of 
human beings and the moral significance of caring for others as well as 
ourselves,” Gray argues that “a researcher dedicated to mutuality might 
convene their project’s multiple stakeholders, who will determine together 
what exactly are the risks and rewards of the research and how these will 
be distributed.”69 And in Chapter  7, Shobita Parthasarathy, Professor of 
Public Policy and Women’s and Gender Studies at the University of Michi-
gan, and Jared Katzman, PhD Student and Researcher at the University of 
Michigan School of Information, remind us not only of the negative conse-
quences of the biases in AI datasets and of restriction in AI access but also 
that technical, organization, and legal policy AI Equity solutions exist as 
do ones that enhance civic capacity.

These understandings form the backdrop for the Sunnylands statement’s 
arguments that

Scientists and model creators should adhere to ethical guidelines 
for AI use, particularly in terms of respect for . . . ​the detection 
and mitigation of potential biases in the construction and use of 
AI systems.70

Scientists, model creators, and policymakers should promote equity 
in the questions and needs that AI systems are used to address as 
well as equitable access to AI tools and educational 
opportunities.71

Group members also stressed that policymakers cannot effectively address 
issues of equity and justice merely by “identifying statistical biases in data-
sets, designing systems to be more transparent and explainable in their de-
cision making, and exercising oversight.”72 Rather, the principle of fairness 
requires that AI initiatives, in the words of Parthasarathy and Katzman, 
grapple with “the deep-seated social inequalities that shape the landscape 
of technology development, use, and governance.”73
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In the Sunnylands statement, these values are particularized for the sci-
entific community with specific calls that include:

Scientists and model creators should take credible steps to ensure 
that their uses of AI produce scientifically sound and socially 
beneficial results while taking appropriate steps to mitigate the 
risk of harm. . . . ​Scientists and model creators should adhere to 
ethical guidelines for AI use, particularly in terms of respect for 
clear attribution of observational versus AI-generated sources of 
data, intellectual property, privacy, disclosure, and consent, as well 
as the detection and mitigation of potential biases in the construc-
tion and use of AI systems. . . . ​Scientists, model creators, and 
policymakers should promote equity in the questions and needs 
that AI systems are used to address as well as equitable access to 
AI tools and educational opportunities.74

The Need for Ongoing Monitoring

As the report, Fostering Responsible Computing Research, on which the Sun-
nylands statement builds, notes, “A plan for ongoing monitoring and re-
evaluation by those deploying technologies or otherwise responsible for 
their governance is needed as research insights make their way into deployed 
systems and expectations and concerns shift over time.”75 Throughout the 
deliberations that shaped the Sunnylands statement, working group mem-
bers reiterated this point. As Grosz put it, “Ethics, societal impact, and re-
sponsibility need to be addressed throughout the ‘pipeline’ from ideation 
and design to deployment.”76 Recognizing this need, the Sunnylands state-
ment’s principle five calls for ongoing monitoring, oversight and public en-
gagement by the scientific community and disciplines within it and by a 
NASEM AI strategic council.

Past successes testify to the value of such ongoing vigilance by the 
scientific community. The original February 1975 Asilomar convening on 
recombinant DNA molecules is a case in point. As those drafting the con-
vening’s report noted, research involving such molecules was developing 
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rapidly and being “applied to many different biological problems.” The 
conferees responded with a document that not only offered principles for 
addressing “potential risks” but also noted that “the means for assessing 
and balancing risks with appropriate levels of containment will need to 
be reexamined from time to time.” Recognizing that “it is impossible to 
foresee the entire range of all potential experiments and make judgments 
on them,” they argued that “it is essential to undertake a continuing re-
assessment of the problems in the light of new scientific knowledge.”77 
Fittingly, in 2017 the Asilomar AI Principles statement made a similar 
recommendation noting that “advanced AI could represent a profound 
change in the history of life on Earth, and should be planned for 
and managed with commensurate care and resources.”78 As the three In-
ternational Genome Summits that are the subject of the Baltimore-
Lovell-Badge case study in Chapter 2 attest, statements by the scientific 
community can play a role in circumscribing and guiding uses of new 
technologies.

Despite numerous examples of scientists and other stakeholders taking 
the initiative to curb abuses of new technology by articulating ethical 
principles, repeating past successes but now with AI could prove to be far 
more difficult. AI is already well developed as a commercial product by 
numerous large corporations, which was not the case with genome editing 
and other developments that presented ethical concerns. It remains to be 
seen whether market competition can motivate leadership and developers 
in commercial AI to adopt principles that guard against abuses or whether 
competition will disincentivize controls and guardrails.

The call for a NASEM strategic council on AI is based on the presup-
position that the academies are the logical home for such an effort. Not only 
are these entities tasked with advising the nation on scientific matters, but 
they play an important role in safeguarding the norms of science. As the 
introduction noted, that norm protective function is evident in reports such 
as On Being a Scientist: A Guide to Responsible Conduct in Research,79 Fos-
tering Integrity in Research,80 Reproducibility and Replicability in Science,81 
Fostering Responsible Computing Research: Foundations and Practices,82 and 
workshops such as On Leading a Lab: Strengthening Scientific Leadership 
in Responsible Research.
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Creating and superintending the strategic council on AI, as the work-
ing group urges, would also comport with the core mission of the acade-
mies. Founded by legislation passed by Congress and signed into law by 
President Lincoln in March 1863, NAS’s mission is providing “leadership 
in science for the nation and the world by: Recognizing and elevating the 
best science and fostering its broad understanding. Producing and promot-
ing adoption of independent, authoritative, trusted scientific advice for the 
benefit of society.”83

Unsurprisingly then after reviewing the history and lessons of past 
efforts by the scientific community, including the recombinant DNA one, 
in Chapter  4, Marc Aidinoff, Research Associate at the Institute for 
Advanced Learning, and David Kaiser, Germeshausen Professor of the 
History of Science and Professor of Physics, Massachusetts Institute of 
Technology, draw the conclusion that forms the backdrop of the Sunnyl-
ands monitoring, oversight, and engagement principle (principle five).” 
Specialists and nonexpert stakeholders should regularly scrutinize both 
evolving technologies and the shifting social practices within which they 
are embedded. Only then can best practices be identified and refined.”84

Consistent with that conclusion, governments around the globe have in-
stituted structures to monitor and oversee the development of generative 
AI. The Sunnylands statement recognizes that it is both appropriate and 
necessary that the scientific community and the disciplines within it do the 
same. Protecting the integrity of science and its norms and values should 
be a central focus of such efforts.
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